This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A022171 Triangle of Gaussian binomial coefficients [ n,k ] for q = 7. 16
 1, 1, 1, 1, 8, 1, 1, 57, 57, 1, 1, 400, 2850, 400, 1, 1, 2801, 140050, 140050, 2801, 1, 1, 19608, 6865251, 48177200, 6865251, 19608, 1, 1, 137257, 336416907, 16531644851, 16531644851, 336416907, 137257, 1, 1 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 REFERENCES F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier-North Holland, 1978, p. 698. LINKS G. C. Greubel, Rows n=0..50 of triangle, flattened R. Mestrovic, Lucas' theorem: its generalizations, extensions and applications (1878--2014),  arXiv:1409.3820 [math.NT], 2014. Kent E. Morrison, Integer Sequences and Matrices Over Finite Fields, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.1. FORMULA T(n,k) = T(n-1,k-1) + q^k * T(n-1,k). - Peter A. Lawrence, Jul 13 2017 EXAMPLE 1 ; 1 1; 1 8 1; 1 57 57 1; 1 400 2850 400 1; 1 2801 140050 140050 2801 1; 1 19608 6865251 48177200 6865251 19608 1; 1 137257 336416907 16531644851 16531644851 336416907 137257 1; MAPLE A027875 := proc(n)     mul(7^i-1, i=1..n) ; end proc: A022171 := proc(n, m)     A027875(n)/A027875(m)/A027875(n-m) ; end proc: # R. J. Mathar, Jul 19 2017 MATHEMATICA p[n_]:=Product[7^i - 1, {i, 1, n}]; t[n_, k_]:=p[n]/(p[k]*p[n - k]); Table[t[n, k], {n, 0, 15}, {k, 0, n}]//Flatten (* Vincenzo Librandi, Aug 13 2016 *) Table[QBinomial[n, k, 7], {n, 0, 10}, {k, 0, n}]//Flatten (* or *) q:= 7; T[n_, 0]:= 1; T[n_, n_]:= 1; T[n_, k_]:= T[n, k] = If[k < 0 || n < k, 0, T[n-1, k -1] +q^k*T[n-1, k]]; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten  (* G. C. Greubel, May 27 2018 *) PROG (PARI) {q=7; T(n, k) = if(k==0, 1, if (k==n, 1, if (k<0 || n

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 7 20:44 EST 2019. Contains 329849 sequences. (Running on oeis4.)