login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle of Gaussian binomial coefficients [ n,k ] for q = 7.
18

%I #25 May 28 2018 11:13:51

%S 1,1,1,1,8,1,1,57,57,1,1,400,2850,400,1,1,2801,140050,140050,2801,1,1,

%T 19608,6865251,48177200,6865251,19608,1,1,137257,336416907,

%U 16531644851,16531644851,336416907,137257,1,1

%N Triangle of Gaussian binomial coefficients [ n,k ] for q = 7.

%D F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier-North Holland, 1978, p. 698.

%H G. C. Greubel, <a href="/A022171/b022171.txt">Rows n=0..50 of triangle, flattened</a>

%H R. Mestrovic, <a href="http://arxiv.org/abs/1409.3820">Lucas' theorem: its generalizations, extensions and applications (1878--2014)</a>, arXiv:1409.3820 [math.NT], 2014.

%H Kent E. Morrison, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL9/Morrison/morrison37.html">Integer Sequences and Matrices Over Finite Fields</a>, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.1.

%F T(n,k) = T(n-1,k-1) + q^k * T(n-1,k). - _Peter A. Lawrence_, Jul 13 2017

%e 1 ;

%e 1 1;

%e 1 8 1;

%e 1 57 57 1;

%e 1 400 2850 400 1;

%e 1 2801 140050 140050 2801 1;

%e 1 19608 6865251 48177200 6865251 19608 1;

%e 1 137257 336416907 16531644851 16531644851 336416907 137257 1;

%p A027875 := proc(n)

%p mul(7^i-1,i=1..n) ;

%p end proc:

%p A022171 := proc(n,m)

%p A027875(n)/A027875(m)/A027875(n-m) ;

%p end proc: # _R. J. Mathar_, Jul 19 2017

%t p[n_]:=Product[7^i - 1, {i, 1, n}]; t[n_, k_]:=p[n]/(p[k]*p[n - k]); Table[t[n, k], {n, 0, 15}, {k, 0, n}]//Flatten (* _Vincenzo Librandi_, Aug 13 2016 *)

%t Table[QBinomial[n,k,7], {n,0,10}, {k,0,n}]//Flatten (* or *) q:= 7; T[n_, 0]:= 1; T[n_,n_]:= 1; T[n_,k_]:= T[n,k] = If[k < 0 || n < k, 0, T[n-1, k -1] +q^k*T[n-1,k]]; Table[T[n,k], {n,0,10}, {k,0,n}] // Flatten (* _G. C. Greubel_, May 27 2018 *)

%o (PARI) {q=7; T(n,k) = if(k==0,1, if (k==n, 1, if (k<0 || n<k, 0, T(n-1,k-1) + q^k*T(n-1,k))))};

%o for(n=0,10, for(k=0,n, print1(T(n,k), ", "))) \\ _G. C. Greubel_, May 27 2018

%Y Cf. A023000 (k=1), A022231 (k=2)

%K nonn,tabl

%O 0,5

%A _N. J. A. Sloane_