login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A022172 Triangle of Gaussian binomial coefficients [ n,k ] for q = 8. 15
1, 1, 1, 1, 9, 1, 1, 73, 73, 1, 1, 585, 4745, 585, 1, 1, 4681, 304265, 304265, 4681, 1, 1, 37449, 19477641, 156087945, 19477641, 37449, 1, 1, 299593, 1246606473, 79936505481, 79936505481, 1246606473, 299593, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,5

REFERENCES

F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier-North Holland, 1978, p. 698.

LINKS

G. C. Greubel, Rows n=0..50 of triangle, flattened

R. Mestrovic, Lucas' theorem: its generalizations, extensions and applications (1878--2014), arXiv preprint arXiv:1409.3820 [math.NT], 2014.

Kent E. Morrison, Integer Sequences and Matrices Over Finite Fields, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.1.

FORMULA

T(n,k) = T(n-1,k-1) + q^k * T(n-1,k). - Peter A. Lawrence, Jul 13 2017

EXAMPLE

1 ;

1 1;

1 9 1;

1 73 73 1;

1 585 4745 585 1;

1 4681 304265 304265 4681 1;

1 37449 19477641 156087945 19477641 37449 1;

1 299593 1246606473 79936505481 79936505481 1246606473 299593 1;

1 2396745 79783113865 40928737412745 327499862955657 40928737412745 79783113865 2396745 1 ;

MAPLE

A027876 := proc(n)

    mul(8^i-1, i=1..n) ;

end proc:

A022172 := proc(n, m)

    A027876(n)/A027876(m)/A027876(n-m) ;

end proc: # R. J. Mathar, Jul 19 2017

MATHEMATICA

a027878[n_]:=Times@@ Table[8^i - 1, {i, n}]; T[n_, m_]:=a027878[n]/( a027878[m] a027878[n - m]); Table[T[n, m], {n, 0, 10}, {m, 0, n}]//Flatten (* Indranil Ghosh, Jul 20 2017 *)

Table[QBinomial[n, k, 8], {n, 0, 10}, {k, 0, n}]//Flatten (* or *) q:= 8; T[n_, 0]:= 1; T[n_, n_]:= 1; T[n_, k_]:= T[n, k] = If[k < 0 || n < k, 0, T[n-1, k -1] +q^k*T[n-1, k]]; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten  (* G. C. Greubel, May 27 2018 *)

PROG

(Python)

from operator import mul

def a027878(n): return 1 if n==0 else reduce(mul, [8**i - 1 for i in xrange(1, n + 1)])

def T(n, m): return a027878(n)/(a027878(m)*a027878(n - m))

for n in xrange(11): print [T(n, m) for m in xrange(n + 1)] # Indranil Ghosh, Jul 20 2017

(PARI) {q=8; T(n, k) = if(k==0, 1, if (k==n, 1, if (k<0 || n<k, 0, T(n-1, k-1) + q^k*T(n-1, k))))};

for(n=0, 10, for(k=0, n, print1(T(n, k), ", "))) \\ G. C. Greubel, May 27 2018

CROSSREFS

Cf. A023001 (k=1), A022242 (k=2).

Sequence in context: A166961 A202988 A098436 * A173005 A015123 A176647

Adjacent sequences:  A022169 A022170 A022171 * A022173 A022174 A022175

KEYWORD

nonn,tabl

AUTHOR

N. J. A. Sloane

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 6 16:24 EST 2019. Contains 329808 sequences. (Running on oeis4.)