login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A166961
Triangle T(n,k) read by rows: T(n,k) = (m*n - m*k + 1)*T(n - 1, k - 1) + k*(m*k - (m - 1))*T(n - 1, k) where m = 2.
3
1, 1, 1, 1, 9, 1, 1, 59, 42, 1, 1, 361, 925, 154, 1, 1, 2175, 16402, 8937, 507, 1, 1, 13061, 265605, 365050, 67500, 1587, 1, 1, 78379, 4127746, 12611845, 5592850, 442242, 4852, 1, 1, 470289, 62935117, 398536866, 365184855, 68337922, 2652742, 14676, 1
OFFSET
1,5
COMMENTS
The general recursion relation T(n,k)= (m*n - m*k + 1)*T(n - 1, k - 1) + k*(m*k - (m - 1))*T(n - 1, k) connects several sequences for differing values of m. These are: m = 0 yields A008277, m = 1 yields A166960, m = 2 yields this sequence, and m = 3 yields A166962. These sequences are, in essence, generalized Stirling numbers of the second kind. - G. C. Greubel, May 29 2016
FORMULA
T(n,k)= (2*n - 2*k + 1)*T(n - 1, k - 1) + k*(2*k - 1)*T(n - 1, k).
EXAMPLE
Triangle starts:
{1},
{1, 1},
{1, 9, 1},
{1, 59, 42, 1},
{1, 361, 925, 154, 1},
{1, 2175, 16402, 8937, 507, 1},
{1, 13061, 265605, 365050, 67500, 1587, 1},
{1, 78379, 4127746, 12611845, 5592850, 442242, 4852, 1},
{1, 470289, 62935117, 398536866, 365184855, 68337922, 2652742, 14676, 1},
{1, 2821751, 951081090, 11977188769, 20817224001, 7796966547, 719764976, 15024830, 44181, 1}
...
MATHEMATICA
A[n_, 1] := 1; A[n_, n_] := 1; A[n_, k_] := (2*n - 2*k + 1)*A[n - 1, k - 1] + k*(2*k - 1)*A[n - 1, k]; Flatten[ Table[A[n, k], {n, 10}, {k, n}]] (* modified by G. C. Greubel, May 29 2016 *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Roger L. Bagula and Mats Granvik, Oct 25 2009
STATUS
approved