login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A156278
A higher order recursion triangle sequence: m=3;l=3;e(n,k,m)=(l*k + m - 1)e(n - 1, k, m) + (m*n - l*k + 1 - m)e(n - 1, k - 1, m).
0
1, 1, 1, 1, 9, 1, 1, 52, 44, 1, 1, 270, 716, 187, 1, 1, 1363, 8428, 7069, 762, 1, 1, 6831, 85143, 162039, 60151, 3065, 1, 1, 34174, 790440, 2889288, 2462504, 473162, 12280, 1, 1, 170892, 6972826, 44429208, 72035800, 32668794, 3557734, 49143, 1, 1, 854485
OFFSET
0,5
COMMENTS
Row sums are:
{2, 2, 4, 22, 196, 2350, 35248, 634462, 13323700, 319768798, 8633757544,...}.
The MacMahon level generalization that I was looking for:
I can get the Sierpinski Pascal mostly by this method too.
I did it by looking at the three variables {n,k,m} as being a 3d plane and the General -Sierpinski-Pascal like
{{m,0,0},
{0,-m,0},
{0,0,1}}. {n,k,1}
and the General Eulerian as being like:
{{m,0,0},
{0,-1,1},
{0,0-m}}. {n,k,1}
So the MacMahon is the next quantum step up in k:
{{m,0,0},
{0,-2,1},
{0,0-m}}. {n,k,1}
The further generalization adds a new quantum variable l:
{{m,0,0},
{0,-l,1},
{0,0-m}}. {n,k,1}
This recursive result seems to give a much more general type of combinatorial triangle sequence.
FORMULA
m=3;l=3;
e(n,k,m)=(l*k + m - 1)e(n - 1, k, m) + (m*n - l*k + 1 - m)e(n - 1, k - 1, m).
EXAMPLE
{1},
{1, 1},
{1, 9, 1},
{1, 52, 44, 1},
{1, 270, 716, 187, 1},
{1, 1363, 8428, 7069, 762, 1},
{1, 6831, 85143, 162039, 60151, 3065, 1},
{1, 34174, 790440, 2889288, 2462504, 473162, 12280, 1},
{1, 170892, 6972826, 44429208, 72035800, 32668794, 3557734, 49143, 1},
{1, 854485, 59542232, 621204982, 1719368528, 1491834898, 397842620, 26034427, 196598, 1}
MATHEMATICA
m = 3; l = 3;
e[n_, 0, m_] := 1; e[n_, k_, m_] := 0 /; k >= n;
e[n_, k_, 1] := 1 /; k >= n
e[n_, k_, m_] := (l*k + m - 1)e[ n - 1, k, m] + (m*n - l*k + 1 - m)e[n - 1, k - 1, m];
Table[Table[e[n, k, m], {k, 0, n - 1}], {n, 1, 10}];
Flatten[%]
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
STATUS
approved