OFFSET
0,2
COMMENTS
In general, for m >= 1, Sum_{k>=0} 1/(m^k * Catalan(k)) = 2*m*(8*m + 1) / (4*m - 1)^2 + 24 * m^2 * arcsin(1/(2*sqrt(m))) / (4*m - 1)^(5/2). - Vaclav Kotesovec, Nov 23 2021
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..200
Vincent Pilaud, Pebble trees, arXiv:2205.06686 [math.CO], 2022.
FORMULA
a(n) = 10^n*A000108(n).
From Gary W. Adamson, Jul 18 2011: (Start)
a(n) is the upper left term in M^n, M = an infinite square production matrix:
10, 10, 0, 0, 0, ...
10, 10, 10, 0, 0, ...
10, 10, 10, 10, 0, ...
10, 10, 10, 10, 10, ...
... (End)
E.g.f.: KummerM(1/2, 2, 40*x). - Peter Luschny, Aug 26 2012
G.f.: c(10*x) with c(x) the o.g.f. of A000108 (Catalan). - Philippe Deléham, Nov 15 2013
a(n) = Sum_{k=0..n} A085880(n,k)*9^k. - Philippe Deléham, Nov 15 2013
G.f.: 1/(1 - 10*x/(1 - 10*x/(1 - 10*x/(1 - ...)))), a continued fraction. - Ilya Gutkovskiy, Aug 08 2017
Sum_{n>=0} 1/a(n) = 180/169 + 800*arctan(1/sqrt(39)) / (507*sqrt(39)). - Vaclav Kotesovec, Nov 23 2021
Sum_{n>=0} (-1)^n/a(n) = 1580/1681 - 2400*arctanh(1/sqrt(41)) / (1681*sqrt(41)). - Amiram Eldar, Jan 25 2022
D-finite with recurrence (n+1)*a(n) +20*(-2*n+1)*a(n-1)=0. - ~~~
MATHEMATICA
Table[10^n CatalanNumber[n], {n, 0, 20}] (* Harvey P. Dale, Mar 12 2013 *)
PROG
(Magma) [10^n*Catalan(n): n in [0..20]]; // Vincenzo Librandi, Jul 19 2011
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Philippe Deléham, Feb 07 2009
EXTENSIONS
a(15) corrected by Vincenzo Librandi, Jul 19 2011
STATUS
approved