login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A320671
G.f.: 1 / [ Sum_{n>=0} (-1)^n * (2*n+1)*(9*n+1) * x^(n*(n+1)/2) ]^(1/3).
2
1, 10, 200, 4635, 115400, 2989000, 79413182, 2147670780, 58847999800, 1628799414030, 45443174184489, 1276097550750560, 36027161027614673, 1021735788590470670, 29088548540723602200, 830905722688352466737, 23803614419994729655422, 683666066800944445647240, 19680193160906254634961364, 567666652900351449376374940
OFFSET
0,2
COMMENTS
Limit a(n+1)/a(n) = 29.8937006274429170027521943552718162106155192278570861849...
LINKS
EXAMPLE
G.f.: A(x) = 1 + 10*x + 200*x^2 + 4635*x^3 + 115400*x^4 + 2989000*x^5 + 79413182*x^6 + 2147670780*x^7 + 58847999800*x^8 + 1628799414030*x^9 + ...
such that
1/A(x)^3 = 1 - 30*x + 95*x^3 - 196*x^6 + 333*x^10 - 506*x^15 + 715*x^21 - 960*x^28 + 1241*x^36 - 1558*x^45 + 1911*x^55 - 2300*x^66 + ... + (-1)^n * (2*n+1)*(9*n+1) * x^(n*(n+1)/2) + ...
Note that the nonzero coefficients of 1/A(x)^3 can be generated by
(1 - 27*x + 8*x^2)/(1 + x)^3 = 1 - 30*x + 95*x^2 - 196*x^3 + 333*x^4 + ...
RELATED SERIES.
The cube of the g.f. A(x) equals the g.f. of A320670:
A(x)^3 = 1 + 30*x + 900*x^2 + 26905*x^3 + 804300*x^4 + 24043500*x^5 + 718749221*x^6 + 21486074010*x^7 + 642298264200*x^8 + 19200672023385*x^9 + ... + A320670(n)*x^n + ...
PROG
(PARI) {a(n) = my(A = 1/sum(m=0, sqrtint(2*n+1), (-1)^m * (2*m+1)*(9*m+1) * x^(m*(m+1)/2) +x*O(x^n))^(1/3)); polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
Cf. A320670.
Sequence in context: A126431 A335649 A202436 * A237025 A156275 A036362
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Oct 18 2018
STATUS
approved