login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A320669
O.g.f. A(x) satisfies: [x^n] exp(-n^3*A(x)) / (1 - n^2*x)^n = 0, for n > 0.
3
1, 2, 27, 2176, 316125, 92433420, 38689900249, 24036220587520, 19705732103751309, 21228545767337495500, 28631298365231328948940, 47701162183511368703635200, 95797470923250302955913961043, 228907109818475997814838969598324, 641132565508623116202107427900402750, 2082400670957118326405938988144017645568
OFFSET
1,2
COMMENTS
It is remarkable that this sequence should consist entirely of integers.
EXAMPLE
O.g.f.: A(x) = x + 2*x^2 + 27*x^3 + 2176*x^4 + 316125*x^5 + 92433420*x^6 + 38689900249*x^7 + 24036220587520*x^8 + 19705732103751309*x^9 + ...
ILLUSTRATION OF DEFINITION.
The table of coefficients of x^k/k! in exp(-n^3*A(x)) / (1 - n^2*x)^n begins:
n=1: [1, 0, -3, -160, -52191, -37930176, -66549456875, ...];
n=2: [1, 0, 0, -1040, -414720, -303430848, -532404700160, ...];
n=3: [1, 0, 135, 0, -1237275, -1019993472, -1799293659165, ...];
n=4: [1, 0, 768, 22400, 0, -2155144704, -4259850874880, ...];
n=5: [1, 0, 2625, 136000, 25862625, 0, -7511859284375, ...];
n=6: [1, 0, 6912, 524880, 192513024, 36792874944, 0, ...];
n=7: [1, 0, 15435, 1591520, 938926485, 280095248832, 121196964253015, 0, ...]; ...
in which the coefficient of x^n in row n forms a diagonal of zeros.
PROG
(PARI) {a(n) = my(A=[1]); for(i=1, n, A=concat(A, 0); m=#A; A[m] = Vec( exp(-m^3*x*Ser(A))/(1-m^2*x +x^2*O(x^m))^m)[m+1]/m^3 ); A[n]}
for(n=1, 20, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Oct 19 2018
STATUS
approved