login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A320667
First differences of A066194.
0
1, 2, -1, 5, -1, -2, 1, 10, -1, -2, 1, -5, 1, 2, -1, 21, -1, -2, 1, -5, 1, 2, -1, -10, 1, 2, -1, 5, -1, -2, 1, 42, -1, -2, 1, -5, 1, 2, -1, -10, 1, 2, -1, 5, -1, -2, 1, -21, 1, 2, -1, 5, -1, -2, 1, 10, -1, -2, 1, -5, 1, 2, -1, 85, -1, -2, 1, -5, 1, 2, -1, -10
OFFSET
1,2
FORMULA
a(n) = A066194(n+1) - A066194(n).
a(n) = (1/6)*(-3 + (-1)^A007814(n) + 2^(A007814(n)+3))*(-1)^(A000120(n)+1).
EXAMPLE
To obtain the first 2^n-1 entries if you have the first 2^(n-1)-1 entries, adjoin 1/6 (-3 + (-1)^(1 + n) + 2^(2 + n)) to the right end of the list, negate the signs of the first 2^(n-1)-1 entries, and then adjoin that list to the right. For example for n=3 {1,2,-1} becomes {1,2,-1,5,-1,-2,1}.
MATHEMATICA
Fold[Join[#1, {#2}, -#1] &, {1},
Table[1/6 (-3 + (-1)^(1 + n) + 2^(2 + n)), {n, 2, 6}]]
t[n_/; IntegerQ[Log2[n]]]:=1/6 (-3 + (-1)^IntegerExponent[n, 2] + 8*n);
t[n_/; Not[IntegerQ[Log2[n]]]]:=-t[n-2^Floor[Log2[n]]];
Table[t[j], {j, 1, 15}](* recursive formulation *)
Table[1/6 (-3+(-1)^IntegerExponent[j, 2]+2^(IntegerExponent[j, 2]+3))(-1)^(Total[IntegerDigits[j, 2]]+1), {j, 1, 15}] (* closed form *)
CROSSREFS
Cf. A066194.
Sequence in context: A352566 A246964 A157334 * A236313 A222481 A351954
KEYWORD
sign
AUTHOR
John Erickson, Oct 18 2018
STATUS
approved