OFFSET
0,5
COMMENTS
The dual of a multiset partition has, for each vertex, one part consisting of the indices (or positions) of the parts containing that vertex, counted with multiplicity. For example, the dual of {{1,2},{2,2}} is {{1},{1,2,2}}. This sequence counts non-isomorphic multiset partitions with no singletons whose dual also has no singletons.
LINKS
Andrew Howroyd, Table of n, a(n) for n = 0..50
EXAMPLE
Non-isomorphic representatives of the a(2) = 1 through a(6) = 27 multiset partitions:
{{1,1}} {{1,1,1}} {{1,1,1,1}} {{1,1,1,1,1}} {{1,1,1,1,1,1}}
{{1,1,2,2}} {{1,1,2,2,2}} {{1,1,1,2,2,2}}
{{1,1},{1,1}} {{1,1},{1,1,1}} {{1,1,2,2,2,2}}
{{1,1},{2,2}} {{1,1},{1,2,2}} {{1,1,2,2,3,3}}
{{1,2},{1,2}} {{1,1},{2,2,2}} {{1,1},{1,1,1,1}}
{{1,2},{1,2,2}} {{1,1,1},{1,1,1}}
{{1,1},{1,2,2,2}}
{{1,1,1},{2,2,2}}
{{1,1,2},{1,2,2}}
{{1,1},{2,2,2,2}}
{{1,1,2},{2,2,2}}
{{1,1},{2,2,3,3}}
{{1,1,2},{2,3,3}}
{{1,2},{1,1,2,2}}
{{1,2},{1,2,2,2}}
{{1,2},{1,2,3,3}}
{{1,2,2},{1,2,2}}
{{1,2,3},{1,2,3}}
{{2,2},{1,1,2,2}}
{{1,1},{1,1},{1,1}}
{{1,1},{1,2},{2,2}}
{{1,1},{2,2},{2,2}}
{{1,1},{2,2},{3,3}}
{{1,1},{2,3},{2,3}}
{{1,2},{1,2},{1,2}}
{{1,2},{1,2},{2,2}}
{{1,2},{1,3},{2,3}}
PROG
(PARI) \\ See links in A339645 for combinatorial species functions.
seq(n)={my(A=symGroupSeries(n)); NumUnlabeledObjsSeq(sCartProd(sExp(A-x*sv(1)), sExp(A-x*sv(1))))} \\ Andrew Howroyd, Jan 17 2023
(PARI) Vec(G(20, 1)) \\ G defined in A369287. - Andrew Howroyd, Jan 28 2024
CROSSREFS
KEYWORD
nonn
AUTHOR
Gus Wiseman, Oct 18 2018
EXTENSIONS
Terms a(11) and beyond from Andrew Howroyd, Jan 17 2023
STATUS
approved