login
A320665
Number of non-isomorphic multiset partitions of weight n with no singletons or vertices that appear only once.
16
1, 0, 1, 1, 5, 6, 27, 47, 169, 406, 1327, 3790, 12560, 39919, 136821, 470589, 1687981, 6162696, 23173374, 88981796, 349969596, 1405386733, 5764142220, 24111709328, 102825231702, 446665313598, 1975339030948, 8888051121242, 40667889052853, 189126710033882, 893526261542899
OFFSET
0,5
COMMENTS
The dual of a multiset partition has, for each vertex, one part consisting of the indices (or positions) of the parts containing that vertex, counted with multiplicity. For example, the dual of {{1,2},{2,2}} is {{1},{1,2,2}}. This sequence counts non-isomorphic multiset partitions with no singletons whose dual also has no singletons.
LINKS
EXAMPLE
Non-isomorphic representatives of the a(2) = 1 through a(6) = 27 multiset partitions:
{{1,1}} {{1,1,1}} {{1,1,1,1}} {{1,1,1,1,1}} {{1,1,1,1,1,1}}
{{1,1,2,2}} {{1,1,2,2,2}} {{1,1,1,2,2,2}}
{{1,1},{1,1}} {{1,1},{1,1,1}} {{1,1,2,2,2,2}}
{{1,1},{2,2}} {{1,1},{1,2,2}} {{1,1,2,2,3,3}}
{{1,2},{1,2}} {{1,1},{2,2,2}} {{1,1},{1,1,1,1}}
{{1,2},{1,2,2}} {{1,1,1},{1,1,1}}
{{1,1},{1,2,2,2}}
{{1,1,1},{2,2,2}}
{{1,1,2},{1,2,2}}
{{1,1},{2,2,2,2}}
{{1,1,2},{2,2,2}}
{{1,1},{2,2,3,3}}
{{1,1,2},{2,3,3}}
{{1,2},{1,1,2,2}}
{{1,2},{1,2,2,2}}
{{1,2},{1,2,3,3}}
{{1,2,2},{1,2,2}}
{{1,2,3},{1,2,3}}
{{2,2},{1,1,2,2}}
{{1,1},{1,1},{1,1}}
{{1,1},{1,2},{2,2}}
{{1,1},{2,2},{2,2}}
{{1,1},{2,2},{3,3}}
{{1,1},{2,3},{2,3}}
{{1,2},{1,2},{1,2}}
{{1,2},{1,2},{2,2}}
{{1,2},{1,3},{2,3}}
PROG
(PARI) \\ See links in A339645 for combinatorial species functions.
seq(n)={my(A=symGroupSeries(n)); NumUnlabeledObjsSeq(sCartProd(sExp(A-x*sv(1)), sExp(A-x*sv(1))))} \\ Andrew Howroyd, Jan 17 2023
(PARI) Vec(G(20, 1)) \\ G defined in A369287. - Andrew Howroyd, Jan 28 2024
CROSSREFS
KEYWORD
nonn
AUTHOR
Gus Wiseman, Oct 18 2018
EXTENSIONS
Terms a(11) and beyond from Andrew Howroyd, Jan 17 2023
STATUS
approved