OFFSET
1,2
COMMENTS
The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
LINKS
Alois P. Heinz, Table of n, a(n) for n = 1..10000
EXAMPLE
a(1) = 1 = the empty product.
a(12) = 35 = 5 * 7 = prime(3) * prime(4).
a(16) = 49 = 7^2 = prime(4)^2.
a(23) = 83 = prime(23).
MAPLE
a:= proc(n) option remember; `if`(n=1, 1, min(seq(a(d)*
ithprime(n/d), d=numtheory[divisors](n) minus {n})))
end:
seq(a(n), n=1..60); # Alois P. Heinz, Sep 05 2018
MATHEMATICA
facs[n_]:=If[n<=1, {{}}, Join@@Table[(Prepend[#1, d]&)/@Select[facs[n/d], Min@@#1>=d&], {d, Rest[Divisors[n]]}]];
Table[Min[Times@@Prime/@#&/@facs[n]], {n, 100}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Gus Wiseman, Sep 05 2018
STATUS
approved