login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A210494
Biharmonic numbers: numbers m such that ( Hd(m)+Cd(m) )/2 is an integer, where Hd(m) and Cd(m) are the harmonic mean and the contraharmonic (or antiharmonic) mean of the divisors of m.
3
1, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 35, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 119, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263
OFFSET
1,2
COMMENTS
Equivalently, numbers m such that ( m*sigma_0(m)+sigma_2(m) ) / (2*sigma_1(m)) = (A038040(m) + A001157(m))/A074400(m) is an integer.
All odd primes belong to the sequence. In fact, if p is an odd prime, (p*sigma_0(p)+sigma_2(p))/(2*sigma_1(p)) = (p+1)/2, therefore p is a biharmonic number.
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..1000 from Bruno Berselli)
Marco Abrate, Stefano Barbero, Umberto Cerruti, Nadir Murru, The Biharmonic mean, arXiv:1601.03081 [math.NT], 2016, pages 6-14.
Umberto Cerruti, Numeri Armonici e Numeri Perfetti (in Italian), 2013. The sequence is on page 13.
MAPLE
with(numtheory); P:=proc(q) local a, k, n;
for n from 1 to q do a:=divisors(n);
if type((n*tau(n)+add(a[k]^2, k=1..nops(a)))/(2*sigma(n)), integer) then print(n); fi; od; end; P(1000); # Paolo P. Lava, Oct 11 2013
MATHEMATICA
B[n_] := (n DivisorSigma[0, n] + DivisorSigma[2, n])/(2 DivisorSigma[1, n]); Select[Range[300], IntegerQ[B[#]] &]
PROG
(Magma) IsInteger := func<i | i eq Floor(i)>; [n: n in [1..300] | IsInteger((n*NumberOfDivisors(n)+DivisorSigma(2, n))/(2*SumOfDivisors(n)))];
(Haskell)
a210494 n = a210494_list !! (n-1)
a210494_list = filter
(\x -> (a001157 x + a038040 x) `mod` a074400 x == 0) [1..]
-- Reinhard Zumkeller, Jan 21 2014
(PARI) isok(n) = denominator((n*sigma(n, 0) + sigma(n, 2))/(2*sigma(n)))==1; \\ Michel Marcus, Jan 14 2016
CROSSREFS
Cf. A001599 (harmonic numbers), A020487 (antiharmonic numbers), A038040 (n*sigma_0(n)), A001157 (sigma_2(n)), A074400 (2*sigma_1(n)), A230214 (nonprime terms of A210494).
Cf. A189835.
Sequence in context: A067019 A132106 A242393 * A338483 A318871 A330225
KEYWORD
nonn
AUTHOR
Bruno Berselli, Oct 03 2013 - proposed by Umberto Cerruti (Department of Mathematics "Giuseppe Peano", University of Turin, Italy)
STATUS
approved