OFFSET
0,3
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
V. Jelinek, T. Mansour, M. Shattuck, On multiple pattern avoiding set partitions, Adv. Appl. Math. 50 (2) (2013) 292-326, Theorem 4.27.
FORMULA
G.f.: ( (1-x^2)*sqrt((1-x)*(1-x-4*x^2)) -(1-3*x-2*x^2 +14*x^3 -15*x^4 +3*x^5) / (1-x)^2 ) / ( 2*x^2*(1-3*x+x^2) ).
a(n) ~ sqrt((5389+1307*sqrt(17))/2)*((1+sqrt(17))/2)^n/(n^(3/2)*sqrt(Pi)). - Vaclav Kotesovec, Jul 30 2013
Conjecture: (n+2)*a(n) +2*(-3*n-4)*a(n-1) +4*(2*n+3)*a(n-2) +(13*n-40)*a(n-3) +5*(-7*n+18)*a(n-4) +6*(2*n-1)*a(n-5) +22*(n-7)*a(n-6) +(-19*n+134)*a(n-7) +2*(2*n-15)*a(n-8)=0. - R. J. Mathar, Oct 08 2016
MATHEMATICA
CoefficientList[Series[((1-x^2)*Sqrt[(1-x)*(1-x-4*x^2)]-(1-3*x-2*x^2 +14*x^3-15*x^4+3*x^5)/(1-x)^2)/(2*x^2*(1-3*x+x^2)), {x, 0, 20}], x]
PROG
(PARI) x='x+O('x^50); Vec(( (1-x^2)*sqrt((1-x)*(1-x-4*x^2)) -(1-3*x-2*x^2+14*x^3-15*x^4+3*x^5) / (1-x)^2 ) / ( 2*x^2*(1-3*x+x^2) )) \\ G. C. Greubel, May 31 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
R. J. Mathar, Jan 25 2013
EXTENSIONS
Typo in g.f. corrected by Vaclav Kotesovec, Jul 30 2013
STATUS
approved