OFFSET
0,3
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 0..1382 (terms 0..1000 from Alois P. Heinz)
FORMULA
Conjecture: log(a(n)) ~ log(2)*n + Pi*sqrt(n/3) - 3*log(n)/2. - Vaclav Kotesovec, May 11 2019
a(n) = [x^n] (1 + x)^n * Product_{k>=2} 1 / (1 - x^k). - Ilya Gutkovskiy, Apr 24 2021
EXAMPLE
a(3) = 5: 3, 21a, 21b, 21c, 1a1b1c.
a(4) = 13: 4, 31a, 31b, 31c, 31d, 22, 21a1b, 21a1c, 21a1d, 21b1c, 21b1d, 21c1d, 1a1b1c1d.
MAPLE
b:= proc(n, i, k) option remember; `if`(n=0 or i=1,
binomial(k, n), `if`(i>n, 0, b(n-i, i, k))+b(n, i-1, k))
end:
a:= n-> b(n$3):
seq(a(n), n=0..35);
MATHEMATICA
b[n_, i_, k_] := b[n, i, k] = If[n == 0 || i == 1, Binomial[k, n], If[i > n, 0, b[n - i, i, k]] + b[n, i - 1, k]];
a[n_] := b[n, n, n];
Table[a[n], {n, 0, 35}] (* Jean-François Alcover, May 20 2018, translated from Maple *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Sep 17 2017
STATUS
approved