login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A292507
Number of partitions of n with up to n distinct kinds of 1.
5
1, 1, 2, 5, 13, 33, 82, 201, 488, 1176, 2817, 6714, 15931, 37647, 88628, 207914, 486158, 1133304, 2634339, 6106953, 14121157, 32573842, 74968044, 172164086, 394561089, 902471184, 2060338222, 4695324425, 10681885697, 24261437446, 55017434305, 124573678280
OFFSET
0,3
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 0..1382 (terms 0..1000 from Alois P. Heinz)
FORMULA
Conjecture: log(a(n)) ~ log(2)*n + Pi*sqrt(n/3) - 3*log(n)/2. - Vaclav Kotesovec, May 11 2019
a(n) = [x^n] (1 + x)^n * Product_{k>=2} 1 / (1 - x^k). - Ilya Gutkovskiy, Apr 24 2021
EXAMPLE
a(3) = 5: 3, 21a, 21b, 21c, 1a1b1c.
a(4) = 13: 4, 31a, 31b, 31c, 31d, 22, 21a1b, 21a1c, 21a1d, 21b1c, 21b1d, 21c1d, 1a1b1c1d.
MAPLE
b:= proc(n, i, k) option remember; `if`(n=0 or i=1,
binomial(k, n), `if`(i>n, 0, b(n-i, i, k))+b(n, i-1, k))
end:
a:= n-> b(n$3):
seq(a(n), n=0..35);
MATHEMATICA
b[n_, i_, k_] := b[n, i, k] = If[n == 0 || i == 1, Binomial[k, n], If[i > n, 0, b[n - i, i, k]] + b[n, i - 1, k]];
a[n_] := b[n, n, n];
Table[a[n], {n, 0, 35}] (* Jean-François Alcover, May 20 2018, translated from Maple *)
CROSSREFS
Main diagonal of A292622.
Sequence in context: A369578 A210496 A067676 * A307465 A116703 A007443
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Sep 17 2017
STATUS
approved