login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A292462
Number of partitions of n with n sorts of part 1.
6
1, 1, 5, 31, 278, 3287, 48256, 843567, 17081639, 392869430, 10112244792, 287927207846, 8984122319997, 304828239096197, 11173376516829974, 439988449921648076, 18523908107054523591, 830292183207722271065, 39475390430795389762048, 1984220622132901208082220
OFFSET
0,3
LINKS
FORMULA
a(n) = [x^n] 1/(1-n*x) * Product_{j=2..n} 1/(1-x^j).
a(n) ~ n^n * (1 + 1/n^2 + 1/n^3 + 2/n^4 + 2/n^5 + 4/n^6 + 4/n^7 + 7/n^8 + 8/n^9 + 12/n^10), for coefficients see A002865. - Vaclav Kotesovec, Sep 19 2017
a(n) = Sum_{j=0..n} A002865(j) * n^(n-j). - Alois P. Heinz, Sep 22 2017
EXAMPLE
a(2) = 5: 2, 1a1a, 1a1b, 1b1a, 1b1b.
MAPLE
b:= proc(n, i, k) option remember; `if`(n=0 or i=1, k^n,
`if`(i>n, 0, b(n-i, i, k))+b(n, i-1, k))
end:
a:= n-> b(n$3):
seq(a(n), n=0..23);
MATHEMATICA
b[n_, i_, k_] := b[n, i, k] = If[n == 0 || i == 1, k^n, If[i > n, 0, b[n - i, i, k]] + b[n, i - 1, k]];
a[0] = 1; a[n_] := b[n, n, n];
Table[a[n], {n, 0, 23}] (* Jean-François Alcover, May 19 2018, translated from Maple *)
CROSSREFS
Main diagonal of A292741.
Sequence in context: A218679 A296967 A347416 * A340392 A360774 A176302
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Sep 16 2017
STATUS
approved