login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A292461
Expansion of (1 - x - x^2 + sqrt((1 - x - x^2)^2 - 4*x^3))/2 in powers of x.
2
1, -1, -1, -1, -1, -2, -4, -8, -17, -37, -82, -185, -423, -978, -2283, -5373, -12735, -30372, -72832, -175502, -424748, -1032004, -2516347, -6155441, -15101701, -37150472, -91618049, -226460893, -560954047, -1392251012, -3461824644, -8622571758, -21511212261
OFFSET
0,6
LINKS
FORMULA
Convolution inverse of A292460.
Let f(x) = (1 - x - x^2 - sqrt((1 - x - x^2)^2 - 4*x^3))/(2*x^3).
G.f.: 1-x-x^2-x^3/(1-x-x^2-x^3/(1-x-x^2-x^3/(1-x-x^2-x^3/(1-x-x^2-x^3/(... (continued fraction).
G.f.: 1/f(x) = 1 - x - x^2 - x^3*f(x).
a(n) = -A292460(n-3) for n > 2.
a(n) ~ -5^(1/4) * phi^(2*n - 2) / (2 * sqrt(Pi) * n^(3/2)), where phi is the golden ratio (1+sqrt(5))/2. - Vaclav Kotesovec, Sep 17 2017, simplified Dec 06 2021
Conjecture D-finite with recurrence: n*a(n) +(-2*n+3)*a(n-1) +(-n+3)*a(n-2) +(-2*n+9)*a(n-3) +(n-6)*a(n-4)=0. - R. J. Mathar, Jan 24 2020
MATHEMATICA
CoefficientList[Series[(1-x-x^2 +Sqrt[(1-x-x^2)^2 -4*x^3])/2, {x, 0, 50} ], x] (* G. C. Greubel, Aug 13 2018 *)
PROG
(PARI) x='x+O('x^50); Vec((1-x-x^2 +sqrt((1-x-x^2)^2 -4*x^3))/2) \\ G. C. Greubel, Aug 13 2018
(Magma) m:=50; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!((1-x-x^2 +Sqrt((1-x-x^2)^2 -4*x^3))/2)); // G. C. Greubel, Aug 13 2018
CROSSREFS
KEYWORD
sign
AUTHOR
Seiichi Manyama, Sep 16 2017
STATUS
approved