login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A199409
G.f. satisfies: A(x) = Sum_{n>=0} A(x)^n * x^(n^2) * (1 - x^(2*n+1))/(1 - x).
2
1, 1, 2, 4, 8, 17, 37, 82, 184, 417, 954, 2200, 5109, 11937, 28040, 66179, 156857, 373205, 891034, 2134072, 5125944, 12344835, 29802478, 72109852, 174839832, 424742526, 1033697149, 2519947080, 6152807700, 15045156972, 36840289213, 90326900587, 221741403579, 544982530105
OFFSET
0,3
FORMULA
Define f(z,q) = Sum_{n>=0} z^n * q^(n^2) then g.f. A(q) satisfies:
A(q) = (f(A(q),q) - q*f(q^2*A(q),q))/(1-q).
EXAMPLE
G.f.: A(x) = 1 + x + 2*x^2 + 4*x^3 + 8*x^4 + 17*x^5 + 37*x^6 + 82*x^7 +...
where the g.f. A(x) satisfies the equivalent expressions:
A(x) = 1 + A(x)*x*(1-x^3)/(1-x) + A(x)^2*x^4*(1-x^5)/(1-x) + A(x)^3*x^9*(1-x^7)/(1-x) + A(x)^4*x^16*(1-x^9)/(1-x) +...
A(x) = 1 + A(x)*(x + x^2 + x^3) + A(x)^2*(x^4 + x^5 + x^6 + x^7 + x^8) + A(x)^3*(x^9 + x^10 + x^11 + x^12 + x^13 + x^14 + x^15) +...
PROG
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=sum(m=0, sqrtint(n+1), A^m*x^(m^2)*(1-x^(2*m+1))/(1-x))+x*O(x^n)); polcoeff(A, n)}
CROSSREFS
Cf. A199410.
Sequence in context: A136671 A274114 A024557 * A025241 A292461 A203019
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Nov 06 2011
STATUS
approved