The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A199410 G.f. satisfies: A(x) = Sum_{n>=0} A(x)^n * x^(n*(n+1)/2) * (1 - x^(n+1))/(1 - x). 2
 1, 1, 2, 4, 9, 21, 50, 122, 303, 763, 1943, 4996, 12953, 33824, 88877, 234824, 623474, 1662618, 4451171, 11959159, 32235236, 87145035, 236226761, 641942519, 1748479813, 4772529625, 13052515077, 35763350619, 98158386548, 269844628977, 742940020480, 2048366903124, 5655092015428 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS Table of n, a(n) for n=0..32. FORMULA Define f(z,q) = Sum_{n>=0} z^n * q^(n*(n+1)/2) then g.f. A(q) satisfies: A(q) = (f(A(q),q) - q*f(q*A(q),q))/(1-q). EXAMPLE G.f.: A(x) = 1 + x + 2*x^2 + 4*x^3 + 9*x^4 + 21*x^5 + 50*x^6 + 122*x^7 +... where the g.f. satisfies the equivalent expressions: A(x) = 1 + A(x)*x*(1-x^2)/(1-x) + A(x)^2*x^3*(1-x^3)/(1-x) + A(x)^3*x^6*(1-x^4)/(1-x) + A(x)^4*x^10*(1-x^5)/(1-x) +... A(x) = 1 + A(x)*(x + x^2) + A(x)^2*(x^3 + x^4 + x^5) + A(x)^3*(x^6 + x^7 + x^8 + x^9) + A(x)^4*(x^10 + x^11 + x^12 + x^13 + x^14) +... PROG (PARI) {a(n)=local(A=1+x); for(i=1, n, A=sum(m=0, sqrtint(2*n+1), A^m*x^(m*(m+1)/2)*(1-x^(m+1))/(1-x))+x*O(x^n)); polcoeff(A, n)} CROSSREFS Cf. A199409. Sequence in context: A238438 A257104 A318008 * A091600 A261232 A176334 Adjacent sequences: A199407 A199408 A199409 * A199411 A199412 A199413 KEYWORD nonn AUTHOR Paul D. Hanna, Nov 06 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 20 21:11 EDT 2024. Contains 371845 sequences. (Running on oeis4.)