The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A199410 G.f. satisfies: A(x) = Sum_{n>=0} A(x)^n * x^(n*(n+1)/2) * (1 - x^(n+1))/(1 - x). 2
 1, 1, 2, 4, 9, 21, 50, 122, 303, 763, 1943, 4996, 12953, 33824, 88877, 234824, 623474, 1662618, 4451171, 11959159, 32235236, 87145035, 236226761, 641942519, 1748479813, 4772529625, 13052515077, 35763350619, 98158386548, 269844628977, 742940020480, 2048366903124, 5655092015428 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS FORMULA Define f(z,q) = Sum_{n>=0} z^n * q^(n*(n+1)/2) then g.f. A(q) satisfies: A(q) = (f(A(q),q) - q*f(q*A(q),q))/(1-q). EXAMPLE G.f.: A(x) = 1 + x + 2*x^2 + 4*x^3 + 9*x^4 + 21*x^5 + 50*x^6 + 122*x^7 +... where the g.f. satisfies the equivalent expressions: A(x) = 1 + A(x)*x*(1-x^2)/(1-x) + A(x)^2*x^3*(1-x^3)/(1-x) + A(x)^3*x^6*(1-x^4)/(1-x) + A(x)^4*x^10*(1-x^5)/(1-x) +... A(x) = 1 + A(x)*(x + x^2) + A(x)^2*(x^3 + x^4 + x^5) + A(x)^3*(x^6 + x^7 + x^8 + x^9) + A(x)^4*(x^10 + x^11 + x^12 + x^13 + x^14) +... PROG (PARI) {a(n)=local(A=1+x); for(i=1, n, A=sum(m=0, sqrtint(2*n+1), A^m*x^(m*(m+1)/2)*(1-x^(m+1))/(1-x))+x*O(x^n)); polcoeff(A, n)} CROSSREFS Cf. A199409. Sequence in context: A238438 A257104 A318008 * A091600 A261232 A176334 Adjacent sequences:  A199407 A199408 A199409 * A199411 A199412 A199413 KEYWORD nonn AUTHOR Paul D. Hanna, Nov 06 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 1 21:42 EST 2020. Contains 338858 sequences. (Running on oeis4.)