login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A176334
Diagonal sums of number triangle A176331.
3
1, 1, 2, 4, 9, 21, 51, 124, 305, 755, 1879, 4698, 11792, 29694, 74984, 189811, 481498, 1223713, 3115200, 7942134, 20275362, 51823246, 132604193, 339644739, 870745187, 2234208932, 5737129623, 14742751524, 37909928908, 97543380598
OFFSET
0,3
LINKS
FORMULA
a(n) = Sum_{k=0..floor(n/2)} Sum_{j=0..n-k} C(j,n-2k)*C(j,k)*(-1)^(n-k-j).
a(n) ~ phi^(2*n+3) / (4*5^(1/4)*sqrt(Pi*n)), where phi = A001622 is the golden ratio. - Vaclav Kotesovec, Aug 08 2024
MAPLE
A176334 := proc(n)
add(add(binomial(j, n-2*k)*binomial(j, k)*(-1)^(n-k-j), j=0..n-k), k=0..floor(n/2)) ;
end proc: # R. J. Mathar, Feb 10 2015
MATHEMATICA
T[n_, k_]:= T[n, k]= Sum[(-1)^(n-j)*Binomial[j, k]*Binomial[j, n-k], {j, 0, n}]; Table[Sum[T[n-k, k], {k, 0, Floor[n/2]}], {n, 0, 30}] (* G. C. Greubel, Dec 07 2019 *)
PROG
(PARI) T(n, k) = sum(j=0, n, (-1)^(n-j)*binomial(j, n-k)*binomial(j, k));
vector(30, n, sum(j=0, (n-1)\2, T(n-j-1, j)) ) \\ G. C. Greubel, Dec 07 2019
(Magma) T:= func< n, k | &+[(-1)^(n-j)*Binomial(j, n-k)*Binomial(j, k): j in [0..n]] >;
[(&+[T(n-k, k): k in [0..Floor(n/2)]]): n in [0..30]]; // G. C. Greubel, Dec 07 2019
(Sage)
@CachedFunction
def T(n, k): return sum( (-1)^(n-j)*binomial(j, n-k)*binomial(j, k) for j in (0..n))
[sum(T(n-k, k) for k in (0..floor(n/2))) for n in (0..30)] # G. C. Greubel, Dec 07 2019
(GAP)
T:= function(n, k)
return Sum([0..n], j-> (-1)^(n-j)*Binomial(j, k)*Binomial(j, n-k) );
end;
List([0..30], n-> Sum([0..Int(n/2)], j-> T(n-j, j) )); # G. C. Greubel, Dec 07 2019
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Apr 15 2010
STATUS
approved