login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A176333 Expansion of (1-3*x)/(1-4*x+9*x^2). 3
1, 1, -5, -29, -71, -23, 547, 2395, 4657, -2927, -53621, -188141, -269975, 613369, 4883251, 14012683, 12101473, -77708255, -419746277, -979610813, -140726759, 8253590281, 34280901955, 62841295291, -57162936431, -794223403343 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Hankel transform of A176332.

LINKS

Michael De Vlieger, Table of n, a(n) for n = 0..2097

Beata Bajorska-Harapińska, Barbara Smoleń, Roman Wituła, On Quaternion Equivalents for Quasi-Fibonacci Numbers, Shortly Quaternaccis, Advances in Applied Clifford Algebras (2019) Vol. 29, 54.

Index entries for linear recurrences with constant coefficients, signature (4,-9).

FORMULA

a(n) = 3^n*( cos(2n*atan(1/sqrt(5)) - sin(2n*atan(1/sqrt(5))/sqrt(5) ).

a(0)=1, a(1)=1, a(n) = 4*a(n-1) - 9*a(n-2). - Harvey P. Dale, Sep 17 2012

a(n) = -3*A190967(n) + A190967(n+1). - R. J. Mathar, May 04 2013

MAPLE

seq(coeff(series((1-3*x)/(1-4*x+9*x^2), x, n+1), x, n), n = 0..30); # G. C. Greubel, Dec 07 2019

MATHEMATICA

CoefficientList[Series[(1-3x)/(1-4x+9x^2), {x, 0, 30}], x] (* or *) LinearRecurrence[{4, -9}, {1, 1}, 30] (* Harvey P. Dale, Sep 17 2012 *)

PROG

(PARI) my(x='x+O('x^30)); Vec((1-3*x)/(1-4*x+9*x^2)) \\ G. C. Greubel, Dec 07 2019

(MAGMA) I:=[1, 1]; [n le 2 select I[n] else 4*Self(n-1) - 9*Self(n-2): n in [1..30]]; // G. C. Greubel, Dec 07 2019

(Sage)

def A176333_list(prec):

    P.<x> = PowerSeriesRing(ZZ, prec)

    return P( (1-3*x)/(1-4*x+9*x^2) ).list()

A176333_list(30) # G. C. Greubel, Dec 07 2019

(GAP) a:=[1, 1];; for n in [3..30] do a[n]:=4*a[n-1]-9*a[n-2]; od; a; # G. C. Greubel, Dec 07 2019

CROSSREFS

Cf. A176332, A190958, A190967.

Sequence in context: A293174 A108928 A097812 * A100559 A224498 A087348

Adjacent sequences:  A176330 A176331 A176332 * A176334 A176335 A176336

KEYWORD

easy,sign

AUTHOR

Paul Barry, Apr 15 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 23 13:01 EDT 2021. Contains 345401 sequences. (Running on oeis4.)