login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A176333
Expansion of (1-3*x)/(1-4*x+9*x^2).
3
1, 1, -5, -29, -71, -23, 547, 2395, 4657, -2927, -53621, -188141, -269975, 613369, 4883251, 14012683, 12101473, -77708255, -419746277, -979610813, -140726759, 8253590281, 34280901955, 62841295291, -57162936431, -794223403343, -2662427185493, -3501698111885
OFFSET
0,3
COMMENTS
Hankel transform of A176332.
LINKS
Beata Bajorska-Harapińska, Barbara Smoleń, Roman Wituła, On Quaternion Equivalents for Quasi-Fibonacci Numbers, Shortly Quaternaccis, Advances in Applied Clifford Algebras (2019) Vol. 29, 54.
FORMULA
a(n) = 3^n*( cos(2*n*atan(1/sqrt(5))) - sin(2*n*atan(1/sqrt(5)))/sqrt(5) ).
a(0)=1, a(1)=1, a(n) = 4*a(n-1) - 9*a(n-2). - Harvey P. Dale, Sep 17 2012
a(n) = -3*A190967(n) + A190967(n+1). - R. J. Mathar, May 04 2013
MAPLE
seq(coeff(series((1-3*x)/(1-4*x+9*x^2), x, n+1), x, n), n = 0..30); # G. C. Greubel, Dec 07 2019
MATHEMATICA
CoefficientList[Series[(1-3x)/(1-4x+9x^2), {x, 0, 30}], x] (* or *) LinearRecurrence[{4, -9}, {1, 1}, 30] (* Harvey P. Dale, Sep 17 2012 *)
PROG
(PARI) my(x='x+O('x^30)); Vec((1-3*x)/(1-4*x+9*x^2)) \\ G. C. Greubel, Dec 07 2019
(Magma) I:=[1, 1]; [n le 2 select I[n] else 4*Self(n-1) - 9*Self(n-2): n in [1..30]]; // G. C. Greubel, Dec 07 2019
(Sage)
def A176333_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( (1-3*x)/(1-4*x+9*x^2) ).list()
A176333_list(30) # G. C. Greubel, Dec 07 2019
(GAP) a:=[1, 1];; for n in [3..30] do a[n]:=4*a[n-1]-9*a[n-2]; od; a; # G. C. Greubel, Dec 07 2019
CROSSREFS
KEYWORD
easy,sign
AUTHOR
Paul Barry, Apr 15 2010
STATUS
approved