OFFSET
2,1
COMMENTS
The Mathematica code uses backtracking to find the least prime for each n. The Print command may be uncommented to show the sum that produces the prime. - T. D. Noe, Jan 04 2005
EXAMPLE
a(3)=29 because 29=2^2+3^2+4^2;
a(4) = 71 = 1^2+3^2+5^2+6^2
a(5)=79 because 79=1^2+2^2+3^2+4^2+7^2.
MATHEMATICA
$RecursionLimit=1000; try2[lev_] := Module[{t, j, ss}, ss=Plus@@(Take[soln, lev-1]^2); If[lev>n, If[ss<=minPrime&&PrimeQ[ss], minPrime=ss; bestSoln={ss, soln}], If[lev==1, t=1, t=soln[[lev-1]]+1]; j=t; While[ss+Sum[(j+i)^2, {i, 0, n-lev}] <= minPrime, soln[[lev]]=j; try2[lev+1]; soln[[lev]]=t; j++ ]]]; Table[minPrime=Infinity; bestSoln={}; soln=Table[1, {n}]; try2[1]; (*Print[bestSoln]; *) bestSoln[[1]], {n, 2, 50}] (T. D. Noe)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Giovanni Teofilatto, Jan 02 2005
EXTENSIONS
More terms from T. D. Noe, Jan 04 2005
STATUS
approved