Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #4 Mar 30 2012 18:39:59
%S 5,29,71,79,131,179,269,349,457,569,719,971,1171,1327,1601,1913,2269,
%T 2593,2999,3539,4099,4549,5231,5717,6529,7297,7879,8779,9791,10711,
%U 11867,12809,14081,15269,16561,17863,19463,20771,22541,24329,25913
%N Smallest prime equal to the sum of n distinct squares.
%C The Mathematica code uses backtracking to find the least prime for each n. The Print command may be uncommented to show the sum that produces the prime. - _T. D. Noe_, Jan 04 2005
%e a(3)=29 because 29=2^2+3^2+4^2;
%e a(4) = 71 = 1^2+3^2+5^2+6^2
%e a(5)=79 because 79=1^2+2^2+3^2+4^2+7^2.
%t $RecursionLimit=1000; try2[lev_] := Module[{t, j, ss}, ss=Plus@@(Take[soln, lev-1]^2); If[lev>n, If[ss<=minPrime&&PrimeQ[ss], minPrime=ss; bestSoln={ss, soln}], If[lev==1, t=1, t=soln[[lev-1]]+1]; j=t; While[ss+Sum[(j+i)^2, {i, 0, n-lev}] <= minPrime, soln[[lev]]=j; try2[lev+1]; soln[[lev]]=t; j++ ]]]; Table[minPrime=Infinity; bestSoln={}; soln=Table[1, {n}]; try2[1]; (*Print[bestSoln];*) bestSoln[[1]], {n, 2, 50}] (T. D. Noe)
%K nonn,easy
%O 2,1
%A _Giovanni Teofilatto_, Jan 02 2005
%E More terms from _T. D. Noe_, Jan 04 2005