The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A176332 Row sums of triangle A176331. 6
 1, 2, 5, 16, 56, 202, 741, 2752, 10318, 38972, 148070, 565280, 2166646, 8332378, 32136205, 124249856, 481433286, 1868972828, 7267804550, 28304698336, 110383060776, 431000853028, 1684754608210, 6592277745536, 25818887839956 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Hankel transform is A176333. Let A(n) denote the n X n array such that the i-th row of this array is the sequence obtained by applying the partial sum operator i-1 times to the tuple ((sqrt(-1))^m, 1 <= m <= n). Then the negative of the real part of the (n, n)-entry of A(n) equals a(n-2) for all n > 2. - John M. Campbell, Jan 20 2019 LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..200 FORMULA a(n) = Sum_{k=0..n} Sum_{j=0..n} binomial(j,n-k)*binomial(j,k)*(-1)^(n-j). Logarithm g.f.: arctan(x*C(x)) = Sum_{n>=1} a(n)/n*x^n, where C(x) = (1-sqrt(1-4*x))/(2*x) (A000108). - Vladimir Kruchinin, Aug 10 2010 Conjecture: 6*n*a(n) + 2*(-17*n+10)*a(n-1) + (47*n-60)*a(n-2) + 10*(-3*n+5)*a(n-3) + 4*(2*n-5)*a(n-4) = 0. - R. J. Mathar, Nov 24 2012 Recurrence: 2*n*(5*n-8)*a(n) = 2*(25*n^2 - 50*n + 18)*a(n-1) - (45*n^2 - 92*n + 36)*a(n-2) + 2*(2*n-3)*(5*n-3)*a(n-3). - Vaclav Kotesovec, Feb 12 2014 a(n) ~ 4^(n+1) / (5*sqrt(Pi*n)). - Vaclav Kotesovec, Feb 12 2014 MAPLE a:=n->add(add(binomial(j, n-k)*binomial(j, k)*(-1)^(n-j), j=0..n), k=0..n): seq(a(n), n=0..30); # Muniru A Asiru, Jan 23 2019 MATHEMATICA f[n_]:= (-1)^n*Sum[Binomial[n+k, k] Cos[Pi(n+k)/2], {k, 0, n}]; Array[f, 24, 0] (* Robert G. Wilson v, Apr 02 2012 *) PROG (PARI) {a(n) = sum(k=0, n, sum(j=0, n, (-1)^(n-j)*binomial(j, n-k)* binomial(j, k))) }; vector(30, n, n--; a(n)) \\ G. C. Greubel, Feb 21 2019 (PARI) a(n) = {my(v = vector(n, k, I^k)); for (k=1, n-1, v = vector(n, i, sum(j=1, i, v[j])); ); -real(v[n]); } \\ Michel Marcus, Feb 25 2019 (MAGMA) [(&+[ (&+[(-1)^(n-j)*Binomial(j, n-k)*Binomial(j, k): j in [0..n]]): k in [0..n]]): n in [0..30]]; // G. C. Greubel, Feb 21 2019 (Sage) [sum(sum((-1)^(n-j)*binomial(j, n-k)*binomial(j, k) for j in (0..n)) for k in (0..n)) for n in (0..30)] # G. C. Greubel, Feb 21 2019 (GAP) List([0..30], n -> Sum([0..n], k -> Sum([0..n], j -> (-1)^(n-j)* Binomial(j, n-k)*Binomial(j, k) ))) # G. C. Greubel, Feb 22 2019 CROSSREFS Sequence in context: A119611 A057973 A102461 * A191241 A052708 A149973 Adjacent sequences:  A176329 A176330 A176331 * A176333 A176334 A176335 KEYWORD easy,nonn AUTHOR Paul Barry, Apr 15 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 19 04:58 EDT 2021. Contains 345125 sequences. (Running on oeis4.)