login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A191241
Reversion of x - x^2 - 2*x^5.
0
1, 1, 2, 5, 16, 56, 204, 759, 2880, 11132, 43732, 174122, 700952, 2847840, 11661592, 48080811, 199433880, 831649380, 3484523460, 14662036550, 61931353880, 262503848400, 1116179957160, 4759795460550, 20351410848288, 87229181620152, 374722175164232, 1613115479264852, 6957700944802160, 30064406772108544
OFFSET
1,3
COMMENTS
For the reversion of x - a*x^2 - b*x^5 (a!=0, b!=0) we have a(n) = Sum_{j=0..floor((n-1)/3)} a^(n-4*j-1)*b^j*binomial(n-3*j-1,j)*binomial(2*n-3*j-2,n-1)/n, n > 0.
FORMULA
a(n) = Sum_{j=0..floor((n-1)/3)} 2^j*binomial(n-3*j-1,j)*binomial(2*n-3*j-2,n-1)/n, n > 0.
PROG
(Maxima)
a(n):=sum(2^j*binomial(n-3*j-1, j)*binomial(2*n-3*j-2, n-1), j, 0, (n-1)/3)/n;
CROSSREFS
Sequence in context: A057973 A102461 A176332 * A052708 A149973 A149974
KEYWORD
nonn
AUTHOR
Vladimir Kruchinin, May 28 2011
STATUS
approved