login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A191241 Reversion of x - x^2 - 2*x^5. 0
1, 1, 2, 5, 16, 56, 204, 759, 2880, 11132, 43732, 174122, 700952, 2847840, 11661592, 48080811, 199433880, 831649380, 3484523460, 14662036550, 61931353880, 262503848400, 1116179957160, 4759795460550, 20351410848288, 87229181620152, 374722175164232, 1613115479264852, 6957700944802160, 30064406772108544 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

For the reversion of x - a*x^2 - b*x^5 (a!=0, b!=0) we have a(n) = Sum_{j=0..floor((n-1)/3)} a^(n-4*j-1)*b^j*binomial(n-3*j-1,j)*binomial(2*n-3*j-2,n-1)/n, n > 0.

LINKS

Table of n, a(n) for n=1..30.

Vladimir Kruchinin, The method for obtaining expressions for coefficients of reverse generating functions, arXiv:1211.3244 [math.CO], 2012.

FORMULA

a(n) = Sum_{j=0..floor((n-1)/3)} 2^j*binomial(n-3*j-1,j)*binomial(2*n-3*j-2,n-1)/n, n > 0.

PROG

(Maxima)

a(n):=sum(2^j*binomial(n-3*j-1, j)*binomial(2*n-3*j-2, n-1), j, 0, (n-1)/3)/n;

CROSSREFS

Sequence in context: A057973 A102461 A176332 * A052708 A149973 A149974

Adjacent sequences:  A191238 A191239 A191240 * A191242 A191243 A191244

KEYWORD

nonn

AUTHOR

Vladimir Kruchinin, May 28 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 25 03:53 EDT 2021. Contains 346283 sequences. (Running on oeis4.)