login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A191239
Triangle T(n,k) = coefficient of x^n in expansion of (x+x^2+2*x^3)^k.
0
1, 1, 1, 2, 2, 1, 0, 5, 3, 1, 0, 4, 9, 4, 1, 0, 4, 13, 14, 5, 1, 0, 0, 18, 28, 20, 6, 1, 0, 0, 12, 49, 50, 27, 7, 1, 0, 0, 8, 56, 105, 80, 35, 8, 1, 0, 0, 0, 56, 161, 195, 119, 44, 9, 1, 0, 0, 0, 32, 210, 366, 329, 168, 54, 10, 1, 0, 0, 0, 16, 200, 581, 721, 518, 228, 65, 11, 1, 0, 0, 0, 0, 160, 732, 1337, 1288, 774, 300, 77, 12, 1, 0, 0, 0, 0, 80, 780, 2045, 2716, 2142, 1110, 385, 90, 13, 1
OFFSET
1,4
COMMENTS
1. Riordan Array (1,x+x^2+2*x^3) without first column.
2. Riordan Array (1+x+2*x^3,x+x^2+2*x^3) numbering triangle (0,0).
3. Bell Polynomial of second kind B(n,k){1,2,12,0,0,0,...,0}=n!/k!*T(n,k).
4. For the g.f. 1/(1-x-x^2-2*x^3) we have a(n)=sum(k=1..n, T(n,k)) (see A077947)
For more formulas see preprints.
LINKS
Vladimir Kruchinin and D. V. Kruchinin, Composita and their properties, arXiv:1103.2582 [math.CO], 2011-2013.
Vladimir Kruchinin, Derivation of Bell Polynomials of the Second Kind, arXiv:1104.5065 [math.CO], 2013.
FORMULA
T(n,k) = Sum_{j=0..k} binomial(j,n-3*k+2*j)*2^(k-j)*binomial(k,j).
EXAMPLE
Triangle begins:
1,
1,1,
2,2,1,
0,5,3,1,
0,4,9,4,1,
0,4,13,14,5,1,
0,0,18,28,20,6,1,
PROG
(Maxima)
T(n, k):=sum(binomial(j, n-3*k+2*j)*2^(k-j)*binomial(k, j), j, 0, k);
CROSSREFS
Sequence in context: A107267 A320530 A347986 * A112161 A128497 A011434
KEYWORD
nonn,tabl
AUTHOR
Vladimir Kruchinin, May 27 2011
STATUS
approved