OFFSET
1,4
COMMENTS
1. Riordan Array (1,x+x^2+2*x^3) without first column.
2. Riordan Array (1+x+2*x^3,x+x^2+2*x^3) numbering triangle (0,0).
3. Bell Polynomial of second kind B(n,k){1,2,12,0,0,0,...,0}=n!/k!*T(n,k).
4. For the g.f. 1/(1-x-x^2-2*x^3) we have a(n)=sum(k=1..n, T(n,k)) (see A077947)
For more formulas see preprints.
LINKS
Vladimir Kruchinin and D. V. Kruchinin, Composita and their properties, arXiv:1103.2582 [math.CO], 2011-2013.
Vladimir Kruchinin, Derivation of Bell Polynomials of the Second Kind, arXiv:1104.5065 [math.CO], 2013.
FORMULA
T(n,k) = Sum_{j=0..k} binomial(j,n-3*k+2*j)*2^(k-j)*binomial(k,j).
EXAMPLE
Triangle begins:
1,
1,1,
2,2,1,
0,5,3,1,
0,4,9,4,1,
0,4,13,14,5,1,
0,0,18,28,20,6,1,
PROG
(Maxima)
T(n, k):=sum(binomial(j, n-3*k+2*j)*2^(k-j)*binomial(k, j), j, 0, k);
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Vladimir Kruchinin, May 27 2011
STATUS
approved