Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #12 Oct 30 2022 11:05:15
%S 1,1,1,2,2,1,0,5,3,1,0,4,9,4,1,0,4,13,14,5,1,0,0,18,28,20,6,1,0,0,12,
%T 49,50,27,7,1,0,0,8,56,105,80,35,8,1,0,0,0,56,161,195,119,44,9,1,0,0,
%U 0,32,210,366,329,168,54,10,1,0,0,0,16,200,581,721,518,228,65,11,1,0,0,0,0,160,732,1337,1288,774,300,77,12,1,0,0,0,0,80,780,2045,2716,2142,1110,385,90,13,1
%N Triangle T(n,k) = coefficient of x^n in expansion of (x+x^2+2*x^3)^k.
%C 1. Riordan Array (1,x+x^2+2*x^3) without first column.
%C 2. Riordan Array (1+x+2*x^3,x+x^2+2*x^3) numbering triangle (0,0).
%C 3. Bell Polynomial of second kind B(n,k){1,2,12,0,0,0,...,0}=n!/k!*T(n,k).
%C 4. For the g.f. 1/(1-x-x^2-2*x^3) we have a(n)=sum(k=1..n, T(n,k)) (see A077947)
%C For more formulas see preprints.
%H Vladimir Kruchinin and D. V. Kruchinin, <a href="http://arxiv.org/abs/1103.2582">Composita and their properties</a>, arXiv:1103.2582 [math.CO], 2011-2013.
%H Vladimir Kruchinin, <a href="http://arxiv.org/abs/1104.5065">Derivation of Bell Polynomials of the Second Kind</a>, arXiv:1104.5065 [math.CO], 2013.
%F T(n,k) = Sum_{j=0..k} binomial(j,n-3*k+2*j)*2^(k-j)*binomial(k,j).
%e Triangle begins:
%e 1,
%e 1,1,
%e 2,2,1,
%e 0,5,3,1,
%e 0,4,9,4,1,
%e 0,4,13,14,5,1,
%e 0,0,18,28,20,6,1,
%o (Maxima)
%o T(n,k):=sum(binomial(j,n-3*k+2*j)*2^(k-j)*binomial(k,j),j,0,k);
%K nonn,tabl
%O 1,4
%A _Vladimir Kruchinin_, May 27 2011