login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A191243
Reversion of x-x^2-x^3-x^4-x^5-x^6.
1
1, 1, 3, 11, 45, 197, 902, 4269, 20717, 102531, 515521, 2625909, 13521776, 70274194, 368131940, 1941801115, 10304601189, 54976677289, 294708283729, 1586565791533, 8574185062861, 46498569928775, 252966168370110, 1380203261726925, 7550534790990360
OFFSET
1,3
LINKS
Vladimir Kruchinin, The method for obtaining expressions for coefficients of reverse generating functions, arXiv:1211.3244 [math.CO], 2011-2013.
FORMULA
a(n)=sum(k=1..n-1, binomial(n+k-1,n-1)*sum(r=0..k, binomial(k,r)*sum(m=0..r,(sum(j=0..m, binomial(j,-r+n-m-k-j-1)*binomial(m,j)))*binomial(r,m))))/n, n>1, a(1)=1.
MATHEMATICA
a[1] = 1;
a[n_] := Sum[Binomial[n+k-1, n-1] Sum[Binomial[k, r] Sum[Sum[Binomial[j, -r +n-m-k-j-1] Binomial[m, j], {j, 0, m}] Binomial[r, m], {m, 0, r}], {r, 0, k}], {k, 1, n-1}]/n;
Array[a, 25] (* Jean-François Alcover, Aug 08 2018, from Maxima *)
PROG
(Maxima) a(n):=sum(binomial(n+k-1, n-1)*sum(binomial(k, r)*sum((sum(binomial(j, -r+n-m-k-j-1)*binomial(m, j), j, 0, m))*binomial(r, m), m, 0, r), r, 0, k), k, 1, n-1)/n;
(PARI) x='x+O('x^66); Vec(serreverse(x-x^2-x^3-x^4-x^5-x^6)) /* Joerg Arndt, May 28 2011 */
CROSSREFS
Sequence in context: A074532 A049186 A049160 * A217888 A146086 A049177
KEYWORD
nonn
AUTHOR
Vladimir Kruchinin, May 28 2011
STATUS
approved