This site is supported by donations to The OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A005317 a(n) = (2^n + C(2*n,n))/2. (Formerly M1460) 7
 1, 2, 5, 14, 43, 142, 494, 1780, 6563, 24566, 92890, 353740, 1354126, 5204396, 20066492, 77575144, 300572963, 1166868646, 4537698722, 17672894044, 68923788698, 269129985796, 1052051579012, 4116719558104, 16123810230158, 63205319996092, 247959300028484 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Hankel transform is A008619. - Paul Barry, Nov 13 2007 a(n) is the number of lattice paths from (0,0) to (n,n) using E(1,0) and N(0,1) as steps that horizontally cross the diagonal y = x with even many times. For example, a(2) = 5 because there are 6 paths in total and only one of them horizontally crosses the diagonal with odd many times, namely, NEEN. - Ran Pan, Feb 01 2016 REFERENCES N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..178 T. Kløve, Generating functions for the number of permutations with limited displacement, Electron. J. Combin., 16 (2009), #R104. - From N. J. A. Sloane, May 04 2011. P. Fishburn, Letter to N. J. A. Sloane, Mar 1987 Mircea Merca, A Note on Cosine Power Sums J. Integer Sequences, Vol. 15 (2012), Article 12.5.3. Ran Pan and Jeffrey B. Remmel, Paired patterns in lattice paths, arXiv:1601.07988 [math.CO], 2016. Simon Plouffe, Master Thesis, copy at the arXiv site, arXiv:0911.4975 [math.NT], 2009. FORMULA From Simon Plouffe, Feb 18 2011: (Start) G.f.: (1/2)*(-4*x+1+(-(4*x-1)*(2*x-1)^2)^(1/2))/(4*x-1)/(2*x-1). Recurrence: 0=(-24-28*n-8*n^2)*a(n+1)+(18+22*n+6*n^2)*a(n+2)+(-3-4*n-n^2)*a(n+3), a(0)=1, a(1)=2, a(2)=5. (End) a(n) = sum(k=0..floor(n/2),(-1)^k*C(2*n,n-2*k)), n>0. - Mircea Merca, Jun 20 2011 E.g.f.: (exp(2*x)*(1+BesselI(0,2*x))/2 = G(0)/2 ; G(k) = 1+(k)!/(P-2*x*(2*k+1)*(P^2)/(2*x*(2*k+1)*P+(k+1)^2*k!/G(k+1))), where P:=((2*k)!)/(2^k)/((k)!) ; -(continued fraction). - Sergei N. Gladkovskii, Dec 20 2011 a(n) = sum[k*(k+1)/2 {k=C(n,r) 0<=r<=n}]. - J. M. Bergot, Sep 04 2013 a(n) = binomial(2*n,n) - A108958(n). - Ran Pan, Feb 01 2016 MAPLE f := n->(2^n+binomial(2*n, n))/2; MATHEMATICA Table[(2^n + Binomial[2 n, n])/2, {n, 0, 26}] (* Michael De Vlieger, Feb 01 2016 *) PROG (MAGMA) [(2^n+Binomial(2*n, n))/2: n in [0..26]];  // Bruno Berselli, Jun 20 2011 (Maxima) makelist(sum((-1)^k*binomial(2*n, n-2*k), k, 0, floor(n/2)), n, 0, 26); \\ Bruno Berselli, Jun 20 2011 (PARI) a(n)=(2^n+binomial(2*n, n))/2 \\ Charles R Greathouse IV, Dec 20 2011 CROSSREFS Cf. A108958. Sequence in context: A221586 A258312 A123020 * A126566 A112808 A088927 Adjacent sequences:  A005314 A005315 A005316 * A005318 A005319 A005320 KEYWORD nonn,easy AUTHOR N. J. A. Sloane and Peter Fishburn STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 13 18:57 EDT 2019. Contains 327981 sequences. (Running on oeis4.)