login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A221586
G.f. satisfies: A(x) = Sum_{n>=0} x^n * A(x)^(n*(n+1)/2) / Product_{k=1..n} (1 + x*A(x)^k).
2
1, 1, 1, 2, 5, 14, 43, 140, 478, 1695, 6205, 23356, 90135, 355960, 1436755, 5922799, 24929035, 107136291, 470281976, 2109608447, 9677546281, 45434467501, 218478232454, 1076855324959, 5443845581547, 28239060235110, 150346623540441, 821555490484095
OFFSET
0,4
EXAMPLE
G.f.: A(x) = 1 + x + x^2 + 2*x^3 + 5*x^4 + 14*x^5 + 43*x^6 + 140*x^7 +...
where
A(x) = 1 + x*A(x)/(1+x*A(x)) + x^2*A(x)^3/((1+x*A(x))*(1+x*A(x)^2)) + x^3*A(x)^6/((1+x*A(x))*(1+x*A(x)^2)*(1+x*A(x)^3)) + x^4*A(x)^10/((1+x*A(x))*(1+x*A(x)^2)*(1+x*A(x)^3)*(1+x*A(x)^4)) +...
PROG
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=sum(m=0, n, x^m*A^(m*(m+1)/2)/prod(k=1, m, 1+x*subst(A, x, x+x*O(x^n))^k))); polcoeff(A, n)}; \\ corrected by Georg Fischer, Jun 20 2022
CROSSREFS
Sequence in context: A213264 A029889 A307787 * A258312 A123020 A005317
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jan 20 2013
STATUS
approved