The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A221583 A sum over partitions (q=18), see first comment. 9
 1, 17, 323, 5814, 104958, 1889227, 34011900, 612213877, 11019954438, 198359179578, 3570467115834, 64268408079198, 1156831379431973, 20822964829665048, 374813367546080412, 6746640615829343087, 121439531095946141922, 2185911559727028566514 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Set q=18 and f(m)=q^(m-1)*(q-1), then a(n) is the sum over all partitions P of n over all products prod(k=1..L, f(m_k) ) where L is the number of different parts in the partition P=[p_1^m_1, p_2^m_2, ..., p_L^m_L]. Setting q to a prime power gives the sequence "Number of conjugacy classes in GL(n,q)": q=3: A006952, q=4: A049314, q=5: A049315, q=7: A049316, q=8: A182603, q=9: A182604, q=11: A182605, q=13: A182606, q=16: A182607, q=17: A182608, q=19: A182609, q=23: A182610, q=25: A182611, q=27: A182612. Sequences where q is not a prime power are: q=6: A221578, q=10: A221579, q=12: A221580, q=14: A221581, q=15: A221582, q=18: A221583, q=20: A221584. LINKS Alois P. Heinz, Table of n, a(n) for n = 0..300 MAPLE with(numtheory): b:= proc(n) b(n):= add(phi(d)*18^(n/d), d=divisors(n))/n-1 end: a:= proc(n) a(n):= `if`(n=0, 1,        add(add(d*b(d), d=divisors(j)) *a(n-j), j=1..n)/n)     end: seq(a(n), n=0..30);  # Alois P. Heinz, Feb 03 2013 MATHEMATICA b[n_] := Sum[EulerPhi[d]*18^(n/d), {d, Divisors[n]}]/n-1; a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d*b[d], {d, Divisors[j]}]*a[n-j], {j, 1, n}]/n]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Feb 17 2014, after Alois P. Heinz *) PROG (PARI) N=66; x='x+O('x^N); gf=prod(n=1, N, (1-x^n)/(1-18*x^n)  ); v=Vec(gf) CROSSREFS Sequence in context: A089571 A196455 A217960 * A091464 A015693 A029535 Adjacent sequences:  A221580 A221581 A221582 * A221584 A221585 A221586 KEYWORD nonn AUTHOR Joerg Arndt, Jan 20 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 2 17:59 EST 2021. Contains 349445 sequences. (Running on oeis4.)