login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A221583
A sum over partitions (q=18), see first comment.
9
1, 17, 323, 5814, 104958, 1889227, 34011900, 612213877, 11019954438, 198359179578, 3570467115834, 64268408079198, 1156831379431973, 20822964829665048, 374813367546080412, 6746640615829343087, 121439531095946141922, 2185911559727028566514
OFFSET
0,2
COMMENTS
Set q=18 and f(m)=q^(m-1)*(q-1), then a(n) is the sum over all partitions P of n over all products Product_{k=1..L} f(m_k) where L is the number of different parts in the partition P=[p_1^m_1, p_2^m_2, ..., p_L^m_L].
Setting q to a prime power gives the sequence "Number of conjugacy classes in GL(n,q)":
q=3: A006952, q=4: A049314, q=5: A049315, q=7: A049316, q=8: A182603,
q=9: A182604, q=11: A182605, q=13: A182606, q=16: A182607, q=17: A182608,
q=19: A182609, q=23: A182610, q=25: A182611, q=27: A182612.
Sequences where q is not a prime power:
q=6: A221578, q=10: A221579, q=12: A221580,
q=14: A221581, q=15: A221582, q=18: A221583, q=20: A221584.
LINKS
MAPLE
with(numtheory):
b:= proc(n) b(n):= add(phi(d)*18^(n/d), d=divisors(n))/n-1 end:
a:= proc(n) a(n):= `if`(n=0, 1,
add(add(d*b(d), d=divisors(j)) *a(n-j), j=1..n)/n)
end:
seq(a(n), n=0..30); # Alois P. Heinz, Feb 03 2013
MATHEMATICA
b[n_] := Sum[EulerPhi[d]*18^(n/d), {d, Divisors[n]}]/n-1; a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d*b[d], {d, Divisors[j]}]*a[n-j], {j, 1, n}]/n]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Feb 17 2014, after Alois P. Heinz *)
PROG
(PARI)
N=66; x='x+O('x^N);
gf=prod(n=1, N, (1-x^n)/(1-18*x^n) );
v=Vec(gf)
CROSSREFS
Sequence in context: A089571 A196455 A217960 * A091464 A015693 A029535
KEYWORD
nonn
AUTHOR
Joerg Arndt, Jan 20 2013
STATUS
approved