login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A182608
Number of conjugacy classes in GL(n,17).
18
1, 16, 288, 4896, 83504, 1419552, 24137280, 410333472, 6975752256, 118587788080, 2015993812032, 34271894799648, 582622235726688, 9904578007265568, 168377826533765184, 2862423051073925184, 48661191875230982480, 827240261878925204256, 14063084452060314850656
OFFSET
0,2
LINKS
FORMULA
G.f.: Product_{k>=1} (1-x^k)/(1-17*x^k). - Alois P. Heinz, Nov 03 2012
MAPLE
with(numtheory):
b:= proc(n) b(n):= add(phi(d)*17^(n/d), d=divisors(n))/n-1 end:
a:= proc(n) a(n):= `if`(n=0, 1,
add(add(d*b(d), d=divisors(j)) *a(n-j), j=1..n)/n)
end:
seq(a(n), n=0..30); # Alois P. Heinz, Nov 03 2012
MATHEMATICA
b[n_] := Sum[EulerPhi[d]*17^(n/d), {d, Divisors[n]}]/n-1; a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d*b[d], {d, Divisors[j]}]*a[n-j], {j, 1, n}]/n]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Feb 17 2014, after Alois P. Heinz *)
PROG
(Magma) /* The program does not work for n>4: */ [1] cat [NumberOfClasses(GL(n, 17)) : n in [1..4]];
(PARI)
N=66; x='x+O('x^N);
gf=prod(n=1, N, (1-x^n)/(1-17*x^n) );
v=Vec(gf)
/* Joerg Arndt, Jan 24 2013 */
KEYWORD
nonn
AUTHOR
Klaus Brockhaus, Nov 23 2010
EXTENSIONS
More terms from Alois P. Heinz, Nov 03 2012
MAGMA code edited by Vincenzo Librandi, Jan 24 2013
STATUS
approved