Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #25 Jun 19 2023 08:57:20
%S 1,16,288,4896,83504,1419552,24137280,410333472,6975752256,
%T 118587788080,2015993812032,34271894799648,582622235726688,
%U 9904578007265568,168377826533765184,2862423051073925184,48661191875230982480,827240261878925204256,14063084452060314850656
%N Number of conjugacy classes in GL(n,17).
%H Alois P. Heinz, <a href="/A182608/b182608.txt">Table of n, a(n) for n = 0..250</a>
%F G.f.: Product_{k>=1} (1-x^k)/(1-17*x^k). - _Alois P. Heinz_, Nov 03 2012
%p with(numtheory):
%p b:= proc(n) b(n):= add(phi(d)*17^(n/d), d=divisors(n))/n-1 end:
%p a:= proc(n) a(n):= `if`(n=0, 1,
%p add(add(d*b(d), d=divisors(j)) *a(n-j), j=1..n)/n)
%p end:
%p seq(a(n), n=0..30); # _Alois P. Heinz_, Nov 03 2012
%t b[n_] := Sum[EulerPhi[d]*17^(n/d), {d, Divisors[n]}]/n-1; a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d*b[d], {d, Divisors[j]}]*a[n-j], {j, 1, n}]/n]; Table[a[n], {n, 0, 30}] (* _Jean-François Alcover_, Feb 17 2014, after _Alois P. Heinz_ *)
%o (Magma) /* The program does not work for n>4: */ [1] cat [NumberOfClasses(GL(n, 17)) : n in [1..4]];
%o (PARI)
%o N=66; x='x+O('x^N);
%o gf=prod(n=1,N, (1-x^n)/(1-17*x^n) );
%o v=Vec(gf)
%o /* _Joerg Arndt_, Jan 24 2013 */
%Y Cf. A006951, A006952, A049314, A049315, A049316, A182603, A182604, A182605, A182606, A182607, A182609, A182610, A182611, A182612.
%K nonn
%O 0,2
%A _Klaus Brockhaus_, Nov 23 2010
%E More terms from _Alois P. Heinz_, Nov 03 2012
%E MAGMA code edited by _Vincenzo Librandi_, Jan 24 2013