|
|
A006951
|
|
Number of conjugacy classes in GL(n,2).
(Formerly M2577)
|
|
51
|
|
|
1, 1, 3, 6, 14, 27, 60, 117, 246, 490, 1002, 1998, 4053, 8088, 16284, 32559, 65330, 130626, 261726, 523374, 1047690, 2095314, 4192479, 8384808, 16773552, 33546736, 67101273, 134202258, 268420086, 536839446, 1073710914, 2147420250, 4294904430, 8589807438
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
COMMENTS
|
Set q=2 and f(m)=q^(m-1)*(q-1), then a(n) is the sum over all partitions P of n over all products Product_{k=1..L} f(m_k) where L is the number of different parts in the partition P=[p_1^m_1, p_2^m_2, ..., p_L^m_L], see the Macdonald reference.
Setting q to a prime power gives the sequence "Number of conjugacy classes in GL(n,q)":
Sequences where q is not a prime power are:
(End)
Also the number of ways to split an integer partition of n into consecutive constant subsequences. For example, the a(5) = 27 ways (subsequences shown as rows) are:
5 11111
.
4 3 3 22 2 1111 1 111 11
1 2 11 1 111 1 1111 11 111
.
3 2 2 2 111 1 1 11 11 1
1 2 11 1 1 111 1 11 1 11
1 1 1 11 1 1 111 1 11 11
.
2 11 1 1 1
1 1 11 1 1
1 1 1 11 1
1 1 1 1 11
.
1
1
1
1
1
(End)
|
|
REFERENCES
|
W. D. Smith, personal communication.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
|
|
LINKS
|
|
|
FORMULA
|
G.f.: Product_{n>=1} (1-x^n)/(1-2*x^n). - Joerg Arndt, Jan 02 2013
The number a(n) of conjugacy classes in the group GL(n, q) is the coefficient of t^n in Product_{k>=1} (1-t^k)/(1-q*t^k). - Noam Katz (noamkj(AT)hotmail.com), Mar 30 2001
a(n) ~ 2^n - (1+sqrt(2) + (-1)^n*(1-sqrt(2))) * 2^(n/2-1). - Vaclav Kotesovec, Nov 21 2015
G.f.: exp(Sum_{k>=1} ( Sum_{d|k} d*(2^(k/d) - 1) ) * x^k/k). - Ilya Gutkovskiy, Sep 27 2018
|
|
EXAMPLE
|
For the 5 partitions of 4 (namely [1^4]; [2,1^2]; [2^2]; [3,1]; [4]) we have
(f(m) = 2^(m-1)*(2-1) = 2^(m-1) and)
f([1^4]) = 2^3 = 8,
f([2,1^2]) = 1*2^1 = 2,
f([2^2]) = 2^1 = 2,
f([3,1]) = 1*1 = 1,
f([4]) = 1,
the sum is 8+2+2+1+1 = 14 = a(4).
|
|
MAPLE
|
with(numtheory):
b:= n-> add(phi(d)*2^(n/d), d=divisors(n))/n-1:
a:= proc(n) option remember; `if`(n=0, 1,
add(add(d*b(d), d=divisors(j)) *a(n-j), j=1..n)/n)
end:
|
|
MATHEMATICA
|
b[n_] := Sum[EulerPhi[d]*2^(n/d), {d, Divisors[n]}]/n-1; a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d*b[d], {d, Divisors[j]}]*a[n-j], {j, 1, n}]/n]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Feb 17 2014, after Alois P. Heinz *)
Table[Sum[2^(Length[ptn]-Length[Split[ptn]]), {ptn, IntegerPartitions[n]}], {n, 30}] (* Gus Wiseman, Jan 21 2019 *)
|
|
PROG
|
(Magma) /* The program does not work for n>19: */
[1] cat [NumberOfClasses(GL(n, 2)): n in [1..19]]; // Sergei Haller (sergei(AT)sergei-haller.de), Dec 21 2006; edited by Vincenzo Librandi Jan 24 2013
(PARI)
N=66; x='x+O('x^N);
gf=prod(n=1, N, (1-x^n)/(1-2*x^n) );
v=Vec(gf)
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|