login
A221582
A sum over partitions (q=15), see first comment.
9
1, 14, 224, 3360, 50610, 759136, 11390400, 170855776, 2562887040, 38443305390, 576650336640, 8649755046240, 129746337080864, 1946195056159200, 29192926013193600, 437893890197853824, 6568408355529888210, 98526125332947516960, 1477891880032655307360
OFFSET
0,2
COMMENTS
Set q=15 and f(m)=q^(m-1)*(q-1), then a(n) is the sum over all partitions P of n over all products Product_{k=1..L} f(m_k) where L is the number of different parts in the partition P = [p_1^m_1, p_2^m_2, ..., p_L^m_L].
Setting q to a prime power gives the sequence "Number of conjugacy classes in GL(n,q)":
q=3: A006952, q=4: A049314, q=5: A049315, q=7: A049316, q=8: A182603,
q=9: A182604, q=11: A182605, q=13: A182606, q=16: A182607, q=17: A182608,
q=19: A182609, q=23: A182610, q=25: A182611, q=27: A182612.
Sequences where q is not a prime power:
q=6: A221578, q=10: A221579, q=12: A221580,
q=14: A221581, q=15: A221582, q=18: A221583, q=20: A221584.
LINKS
MAPLE
with(numtheory):
b:= proc(n) b(n):= add(phi(d)*15^(n/d), d=divisors(n))/n-1 end:
a:= proc(n) a(n):= `if`(n=0, 1,
add(add(d*b(d), d=divisors(j)) *a(n-j), j=1..n)/n)
end:
seq(a(n), n=0..30); # Alois P. Heinz, Feb 03 2013
MATHEMATICA
b[n_] := Sum[EulerPhi[d]*15^(n/d), {d, Divisors[n]}]/n-1; a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d*b[d], {d, Divisors[j]}]*a[n-j], {j, 1, n}]/n]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Feb 17 2014, after Alois P. Heinz *)
PROG
(PARI)
N=66; x='x+O('x^N);
gf=prod(n=1, N, (1-x^n)/(1-15*x^n) );
v=Vec(gf)
CROSSREFS
Sequence in context: A292041 A319114 A145269 * A320762 A027774 A099272
KEYWORD
nonn
AUTHOR
Joerg Arndt, Jan 20 2013
STATUS
approved