The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A099272 Unsigned member r=-14 of the family of Chebyshev sequences S_r(n) defined in A092184. 1
 0, 1, 14, 225, 3584, 57121, 910350, 14508481, 231225344, 3685097025, 58730327054, 936000135841, 14917271846400, 237740349406561, 3788928318658574, 60385112749130625, 962372875667431424, 15337580897929772161, 244438921491208923150, 3895685162961412998241 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS ((-1)^(n+1))*a(n) = S_{-14}(n), n>=0, defined in A092184. LINKS Robert Israel, Table of n, a(n) for n = 0..831 FORMULA a(n) = (T(n, 8)-(-1)^n)/9, with Chebyshev's polynomials of the first kind evaluated at x=8: T(n, 8)=A001081(n)=((8+3*sqrt(7))^n + (8-3*sqrt(7))^n)/2. a(n) = 16*a(n-1)-a(n-2)+2*(-1)^(n+1), n>=2, a(0)=0, a(1)=1. a(n) = 15*a(n-1) + 15*a(n-2) - a(n-3), n>=3, a(0)=0, a(1)=1, a(2)=14. G.f.: x*(1-x)/((1+x)*(1-16*x+x^2)) = x*(1-x)/(1-15*x-15*x^2+x^3) (from the Stephan link, see A092184). MAPLE f:= n -> (orthopoly[T](n, 8)-(-1)^n)/9: map(f, [\$0..20]); # Robert Israel, Jun 04 2018 MATHEMATICA CoefficientList[Series[x (1-x)/(1-15 x-15 x^2+x^3), {x, 0, 33}], x] (* Vincenzo Librandi, Jun 05 2018 *) CROSSREFS Cf. A001081. Sequence in context: A221582 A320762 A027774 * A273625 A120048 A079563 Adjacent sequences:  A099269 A099270 A099271 * A099273 A099274 A099275 KEYWORD nonn,easy AUTHOR Wolfdieter Lang, Oct 18 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 21 19:42 EDT 2022. Contains 353929 sequences. (Running on oeis4.)