OFFSET
0,3
COMMENTS
((-1)^(n+1))*a(n) = S_{-12}(n), n>=0, defined in A092184.
LINKS
FORMULA
a(n) = (T(n, 7)-(-1)^n)/8, with Chebyshev's polynomials of the first kind evaluated at x=7: T(n, 7)=A011943(n)=((7+4*sqrt(3))^n + (7-4*sqrt(3))^n)/2.
a(n) = 13*a(n-1) + 13*a(n-2) - a(n-3), n>=3, a(0)=0, a(1)=1, a(2)=12.
G.f.: x*(1-x)/((1+x)*(1-14*x+x^2)) = x*(1-x)/(1-13*x-13*x^2+x^3) (from the Stephan link, see A092184).
a(n) = 14*a(n-1)-a(n-2)-2*(-1)^n, a(0)=0, a(1)=1. a(-n)=a(n).
MATHEMATICA
a[n_] := (ChebyshevT[n, 7] - (-1)^n)/8; Table[a[n], {n, 0, 17}] (* Jean-François Alcover, Jun 21 2013, from 1st formula *)
CoefficientList[Series[x (1 - x) / ((1 + x) (1 - 14 x + x^2)), {x, 0, 20}], x] (* Vincenzo Librandi, Jun 21 2013 *)
PROG
(PARI) a(n)=real(((7+4*quadgen(12))^n-(-1)^n)/8) /* Michael Somos, Apr 30 2005 */
(PARI) a(n)=n=abs(2*n); round(2^(n-4)*prod(k=1, n, 2-sin(2*Pi*k/n)))
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Oct 18 2004
STATUS
approved