login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A099270
Unsigned member r=-12 of the family of Chebyshev sequences S_r(n) defined in A092184.
1
0, 1, 12, 169, 2352, 32761, 456300, 6355441, 88519872, 1232922769, 17172398892, 239180661721, 3331356865200, 46399815451081, 646266059449932, 9001325016847969, 125372284176421632, 1746210653453054881
OFFSET
0,3
COMMENTS
((-1)^(n+1))*a(n) = S_{-12}(n), n>=0, defined in A092184.
FORMULA
a(n) = (T(n, 7)-(-1)^n)/8, with Chebyshev's polynomials of the first kind evaluated at x=7: T(n, 7)=A011943(n)=((7+4*sqrt(3))^n + (7-4*sqrt(3))^n)/2.
a(n) = 13*a(n-1) + 13*a(n-2) - a(n-3), n>=3, a(0)=0, a(1)=1, a(2)=12.
G.f.: x*(1-x)/((1+x)*(1-14*x+x^2)) = x*(1-x)/(1-13*x-13*x^2+x^3) (from the Stephan link, see A092184).
a(n) = 14*a(n-1)-a(n-2)-2*(-1)^n, a(0)=0, a(1)=1. a(-n)=a(n).
MATHEMATICA
a[n_] := (ChebyshevT[n, 7] - (-1)^n)/8; Table[a[n], {n, 0, 17}] (* Jean-François Alcover, Jun 21 2013, from 1st formula *)
CoefficientList[Series[x (1 - x) / ((1 + x) (1 - 14 x + x^2)), {x, 0, 20}], x] (* Vincenzo Librandi, Jun 21 2013 *)
PROG
(PARI) a(n)=real(((7+4*quadgen(12))^n-(-1)^n)/8) /* Michael Somos, Apr 30 2005 */
(PARI) a(n)=n=abs(2*n); round(2^(n-4)*prod(k=1, n, 2-sin(2*Pi*k/n)))
CROSSREFS
Sequence in context: A071103 A012489 A027772 * A187361 A366235 A239335
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Oct 18 2004
STATUS
approved