login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Unsigned member r=-12 of the family of Chebyshev sequences S_r(n) defined in A092184.
1

%I #19 Jul 02 2023 18:55:04

%S 0,1,12,169,2352,32761,456300,6355441,88519872,1232922769,17172398892,

%T 239180661721,3331356865200,46399815451081,646266059449932,

%U 9001325016847969,125372284176421632,1746210653453054881

%N Unsigned member r=-12 of the family of Chebyshev sequences S_r(n) defined in A092184.

%C ((-1)^(n+1))*a(n) = S_{-12}(n), n>=0, defined in A092184.

%H Vincenzo Librandi, <a href="/A099270/b099270.txt">Table of n, a(n) for n = 0..200</a>

%H <a href="/index/Tu#2wis">Index entries for two-way infinite sequences</a>

%H <a href="/index/Ch#Cheby">Index entries for sequences related to Chebyshev polynomials.</a>

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (13, 13, -1).

%F a(n) = (T(n, 7)-(-1)^n)/8, with Chebyshev's polynomials of the first kind evaluated at x=7: T(n, 7)=A011943(n)=((7+4*sqrt(3))^n + (7-4*sqrt(3))^n)/2.

%F a(n) = 13*a(n-1) + 13*a(n-2) - a(n-3), n>=3, a(0)=0, a(1)=1, a(2)=12.

%F G.f.: x*(1-x)/((1+x)*(1-14*x+x^2)) = x*(1-x)/(1-13*x-13*x^2+x^3) (from the Stephan link, see A092184).

%F a(n) = 14*a(n-1)-a(n-2)-2*(-1)^n, a(0)=0, a(1)=1. a(-n)=a(n).

%t a[n_] := (ChebyshevT[n, 7] - (-1)^n)/8; Table[a[n], {n, 0, 17}] (* _Jean-François Alcover_, Jun 21 2013, from 1st formula *)

%t CoefficientList[Series[x (1 - x) / ((1 + x) (1 - 14 x + x^2)), {x, 0, 20}], x] (* _Vincenzo Librandi_, Jun 21 2013 *)

%o (PARI) a(n)=real(((7+4*quadgen(12))^n-(-1)^n)/8) /* _Michael Somos_, Apr 30 2005 */

%o (PARI) a(n)=n=abs(2*n); round(2^(n-4)*prod(k=1,n,2-sin(2*Pi*k/n)))

%K nonn,easy

%O 0,3

%A _Wolfdieter Lang_, Oct 18 2004