login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A182609 Number of conjugacy classes in GL(n,19). 18
1, 18, 360, 6840, 130302, 2475720, 47045520, 893864520, 16983555840, 322687560618, 6131066120640, 116490256285320, 2213314916460120, 42052983412605480, 799006685733239040, 15181127028931412160, 288441413566677788022, 5480386857766875373560 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Alois P. Heinz, Table of n, a(n) for n = 0..250

FORMULA

G.f.: Product_{k>=1} (1-x^k)/(1-19*x^k). - Alois P. Heinz, Nov 03 2012

MAPLE

with (numtheory):

b:= proc(n) b(n):= add(phi(d)*19^(n/d), d=divisors(n))/n-1 end:

a:= proc(n) a(n):= `if`(n=0, 1,

       add (add (d*b(d), d=divisors(j)) *a(n-j), j=1..n)/n)

    end:

seq (a(n), n=0..30);  # Alois P. Heinz, Nov 03 2012

MATHEMATICA

b[n_] := Sum[EulerPhi[d]*19^(n/d), {d, Divisors[n]}]/n-1; a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d*b[d], {d, Divisors[j]}]*a[n-j], {j, 1, n}]/n]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Feb 17 2014, after Alois P. Heinz *)

PROG

(MAGMA) /* The program does not work for n>4: */ [1] cat [NumberOfClasses(GL(n, 19)) : n in [1..4]];

(PARI)

N=66; x='x+O('x^N);

gf=prod(n=1, N, (1-x^n)/(1-19*x^n)  );

v=Vec(gf)

/* Joerg Arndt, Jan 24 2013 */

CROSSREFS

Cf. A006951, A006952, A049314, A049315, A049316, A182603, A182604, A182605, A182606, A182607, A182608, A182610, A182611, A182612.

Sequence in context: A143168 A127585 A230348 * A320764 A086502 A259459

Adjacent sequences:  A182606 A182607 A182608 * A182610 A182611 A182612

KEYWORD

nonn

AUTHOR

Klaus Brockhaus, Nov 23 2010

EXTENSIONS

More terms from Alois P. Heinz, Nov 03 2012

MAGMA code edited by Vincenzo Librandi, Jan 24 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 28 21:37 EDT 2020. Contains 334690 sequences. (Running on oeis4.)