The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A182609 Number of conjugacy classes in GL(n,19). 18
 1, 18, 360, 6840, 130302, 2475720, 47045520, 893864520, 16983555840, 322687560618, 6131066120640, 116490256285320, 2213314916460120, 42052983412605480, 799006685733239040, 15181127028931412160, 288441413566677788022, 5480386857766875373560 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS Alois P. Heinz, Table of n, a(n) for n = 0..250 FORMULA G.f.: Product_{k>=1} (1-x^k)/(1-19*x^k). - Alois P. Heinz, Nov 03 2012 MAPLE with(numtheory): b:= proc(n) b(n):= add(phi(d)*19^(n/d), d=divisors(n))/n-1 end: a:= proc(n) a(n):= `if`(n=0, 1, add(add(d*b(d), d=divisors(j)) *a(n-j), j=1..n)/n) end: seq(a(n), n=0..30); # Alois P. Heinz, Nov 03 2012 MATHEMATICA b[n_] := Sum[EulerPhi[d]*19^(n/d), {d, Divisors[n]}]/n-1; a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d*b[d], {d, Divisors[j]}]*a[n-j], {j, 1, n}]/n]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Feb 17 2014, after Alois P. Heinz *) PROG (Magma) /* The program does not work for n>4: */ [1] cat [NumberOfClasses(GL(n, 19)) : n in [1..4]]; (PARI) N=66; x='x+O('x^N); gf=prod(n=1, N, (1-x^n)/(1-19*x^n) ); v=Vec(gf) /* Joerg Arndt, Jan 24 2013 */ CROSSREFS Cf. A006951, A006952, A049314, A049315, A049316, A182603, A182604, A182605, A182606, A182607, A182608, A182610, A182611, A182612. Sequence in context: A127585 A230348 A366684 * A320764 A086502 A259459 Adjacent sequences: A182606 A182607 A182608 * A182610 A182611 A182612 KEYWORD nonn AUTHOR Klaus Brockhaus, Nov 23 2010 EXTENSIONS More terms from Alois P. Heinz, Nov 03 2012 MAGMA code edited by Vincenzo Librandi, Jan 24 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 18 20:35 EDT 2024. Contains 376002 sequences. (Running on oeis4.)