The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A049316 The number k(GL(n,q)) of conjugacy classes in GL(n,q), q=7. 24
 1, 6, 48, 336, 2394, 16752, 117600, 823152, 5764416, 40350870, 282472512, 1977307248, 13841268048, 96888873648, 678222936384, 4747560552384, 33232929612330, 232630507267536, 1628413591207536, 11398895138319024, 79792266250574640, 558545863753891104 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 REFERENCES V. Jovovic, The cycle index polynomials of some classical groups, Belgrade, 1995, unpublished. LINKS Alois P. Heinz, Table of n, a(n) for n = 0..1000 W. Feit and N. J. Fine, Pairs of commuting matrices over a finite field, Duke Math. Journal, 27 (1960) 91-94. FORMULA The number a(n) of conjugacy classes in the group GL(n, q) is the coefficient of t^n in the infinite product: product k=1, 2, ... (1-t^k)/(1-qt^k) - Noam Katz (noamkj(AT)hotmail.com), Mar 30 2001. G.f.: exp(Sum_{k>=1} ( Sum_{d|k} d*(7^(k/d) - 1) ) * x^k/k). - Ilya Gutkovskiy, Sep 27 2018 MAPLE with(numtheory): b:= proc(n) b(n):= add(phi(d)*7^(n/d), d=divisors(n))/n-1 end: a:= proc(n) a(n):= `if`(n=0, 1, add(add(d*b(d), d=divisors(j)) *a(n-j), j=1..n)/n) end: seq(a(n), n=0..30); # Alois P. Heinz, Nov 03 2012 MATHEMATICA b[n_] := Sum[EulerPhi[d]*7^(n/d), {d, Divisors[n]}]/n-1; a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d*b[d], {d, Divisors[j]}]*a[n-j], {j, 1, n}]/n]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Jan 24 2014, after Alois P. Heinz *) PROG (Magma) /* The program does not work for n>8: */ [1] cat [NumberOfClasses(GL(n, 7)): n in [1..8]]; // Sergei Haller (sergei(AT)sergei-haller.de), Dec 21 2006; edited by Vincenzo Librandi, Jan 23 2013 (PARI) x='x+O('x^30); Vec(prod(n=1, 30, (1-x^n)/(1-7*x^n))) \\ Altug Alkan, Sep 27 2018 CROSSREFS Cf. A006951, A006952, A049314, A049315. Sequence in context: A165758 A166152 A300582 * A320072 A024075 A052571 Adjacent sequences: A049313 A049314 A049315 * A049317 A049318 A049319 KEYWORD nonn AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 25 19:01 EDT 2023. Contains 361528 sequences. (Running on oeis4.)