login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A052571
E.g.f. x^3/(1-x)^2.
8
0, 0, 0, 6, 48, 360, 2880, 25200, 241920, 2540160, 29030400, 359251200, 4790016000, 68497228800, 1046139494400, 16999766784000, 292919058432000, 5335311421440000, 102437979291648000, 2067966706950144000
OFFSET
0,4
COMMENTS
For n >= 3, a(n) = number whose factorial base representation (A007623) begins with digit {n-2} followed by n-1 zeros. Viewed in that base, this sequence looks like this: 0, 0, 0, 100, 2000, 30000, 400000, 5000000, 60000000, 700000000, 8000000000, 90000000000, A00000000000, B000000000000, ... (where "digits" A and B stand for placeholder values 10 and 11 respectively). - Antti Karttunen, May 07 2015
FORMULA
E.g.f.: x^3/(-1+x)^2.
Recurrence: {a(1)=0, a(0)=0, a(2)=0, a(3)=6, (1-n^2)*a(n)+(-2+n)*a(n+1)=0}.
For n >= 2, a(n) = (n-2)*n!.
a(n+2) = n*(n+1)*(n+2)*n!. - Zerinvary Lajos, Nov 25 2006
a(n) = 3*A090672(n-2) = 6*A005990(n-2). - Zerinvary Lajos, May 11 2007
From Amiram Eldar, Jan 14 2021: (Start)
Sum_{n>=3} 1/a(n) = 9/4 - e - gamma/2 + Ei(1)/2 = 9/4 - A001113 - (1/2)*A001620 + (1/2)*A091725.
Sum_{n>=3} (-1)^(n+1)/a(n) = -1/4 + gamma/2 - Ei(-1)/2 = -1/4 + (1/2)*A001620 + (1/2)*A099285. (End)
MAPLE
spec := [S, {S=Prod(Z, Z, Z, Sequence(Z), Sequence(Z))}, labeled]: seq(combstruct[count](spec, size=n), n=0..20);
[seq (n*(n+1)*(n+2)*n!, n=0..17)]; # Zerinvary Lajos, Nov 25 2006
a:=n->add((n!), j=1..n-2):seq(a(n), n=0..21); # Zerinvary Lajos, Aug 27 2008
G(x):=x^3/(1-x)^2: f[0]:=G(x): for n from 1 to 21 do f[n]:=diff(f[n-1], x) od: x:=0: seq(f[n], n=0..19); # Zerinvary Lajos, Apr 01 2009
MATHEMATICA
Table[Sum[n!, {i, 3, n}], {n, 0, 19}] (* Zerinvary Lajos, Jul 12 2009 *)
PROG
(Magma) [0, 0], [n*(n+1)*(n+2)*Factorial(n): n in [0..20]]; // Vincenzo Librandi, Oct 11 2011
(Scheme) (define (A052571 n) (if (< n 2) 0 (* (- n 2) (A000142 n)))) ;; Antti Karttunen, May 07 2015
CROSSREFS
Column 5 of A257503 (apart from zero terms. Equally, row 5 of A257505).
Cf. sequences with formula (n + k)*n! listed in A282466.
Sequence in context: A049316 A320072 A024075 * A324074 A052625 A326888
KEYWORD
easy,nonn
AUTHOR
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
STATUS
approved