login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A052574
Expansion of e.g.f. (1-2x)/(1-3x+x^2).
0
1, 1, 4, 30, 312, 4080, 64080, 1174320, 24595200, 579519360, 15172012800, 436929292800, 13726748851200, 467182235520000, 17123385600921600, 672444082582272000, 28167703419727872000, 1253648083943743488000
OFFSET
0,3
LINKS
Vladimir Kruchinin and D. V. Kruchinin, Composita and their properties, arXiv:1103.2582 [math.CO], 2011-2013.
FORMULA
E.g.f.: -(-1+2*x)/(1-3*x+x^2).
Recurrence: {a(1)=1, a(0)=1, (n^2+3*n+2)*a(n)+(-6-3*n)*a(n+1)+a(n+2)=0}.
Sum((1/5)*(-1+4*_alpha)*_alpha^(-1-n), _alpha=RootOf(_Z^2-3*_Z+1))*n!.
a(n) = n!*Sum_{k=1..n} binomial(n-1,k-1)*Fibonacci(k); n>0. [Vladimir Kruchinin, Sep 01 2010]
a(n) = n!*A001519(n). - R. J. Mathar, Nov 27 2011
MAPLE
spec := [S, {S=Sequence(Prod(Z, Sequence(Prod(Z, Sequence(Z)))))}, labeled]: seq(combstruct[count](spec, size=n), n=0..20);
CROSSREFS
Sequence in context: A088794 A239841 A145348 * A158834 A139086 A243244
KEYWORD
easy,nonn
AUTHOR
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
STATUS
approved