login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of e.g.f. (1-2x)/(1-3x+x^2).
0

%I #22 Oct 30 2022 10:02:57

%S 1,1,4,30,312,4080,64080,1174320,24595200,579519360,15172012800,

%T 436929292800,13726748851200,467182235520000,17123385600921600,

%U 672444082582272000,28167703419727872000,1253648083943743488000

%N Expansion of e.g.f. (1-2x)/(1-3x+x^2).

%H INRIA Algorithms Project, <a href="http://ecs.inria.fr/services/structure?nbr=517">Encyclopedia of Combinatorial Structures 517</a>

%H Vladimir Kruchinin and D. V. Kruchinin, <a href="http://arxiv.org/abs/1103.2582">Composita and their properties</a>, arXiv:1103.2582 [math.CO], 2011-2013.

%F E.g.f.: -(-1+2*x)/(1-3*x+x^2).

%F Recurrence: {a(1)=1, a(0)=1, (n^2+3*n+2)*a(n)+(-6-3*n)*a(n+1)+a(n+2)=0}.

%F Sum((1/5)*(-1+4*_alpha)*_alpha^(-1-n), _alpha=RootOf(_Z^2-3*_Z+1))*n!.

%F a(n) = n!*Sum_{k=1..n} binomial(n-1,k-1)*Fibonacci(k); n>0. [_Vladimir Kruchinin_, Sep 01 2010]

%F a(n) = n!*A001519(n). - _R. J. Mathar_, Nov 27 2011

%p spec := [S,{S=Sequence(Prod(Z,Sequence(Prod(Z,Sequence(Z)))))},labeled]: seq(combstruct[count](spec,size=n), n=0..20);

%K easy,nonn

%O 0,3

%A encyclopedia(AT)pommard.inria.fr, Jan 25 2000