login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A145348 G.f. satisfies: A(x/A(x)^2) = 1 + x*A(x)^2. 5
1, 1, 4, 30, 312, 3965, 57824, 933998, 16346728, 305539046, 6037780164, 125227212342, 2711254371568, 61021656441091, 1423063422363676, 34297379607790288, 852463916004336464, 21812807282389353798 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
COMMENTS
More generally, if g.f. A(x) satisfies: A(x/A(x)^k) = 1 + x*A(x)^m, then
A(x) = 1 + x*G(x)^(m+k) where G(x) = A(x*G(x)^k) and G(x/A(x)^k) = A(x);
thus a(n) = [x^(n-1)] ((m+k)/(m+k*n))*A(x)^(m+k*n) for n>=1 with a(0)=1.
LINKS
FORMULA
G.f.: A(x) = 1 + x*G(x)^4 where G(x) = A(x*G(x)^2) and A(x) = G(x/A(x)^2).
a(n) = [x^(n-1)] 2*A(x)^(2*n+2)/(n+1) for n>=1 with a(0)=1; i.e., a(n) equals the coefficient of x^(n-1) in 2*A(x)^(2*n+2)/(n+1) for n>=1 (see comment).
EXAMPLE
G.f.: A(x) = 1 + x + 4*x^2 + 30*x^3 + 312*x^4 + 3965*x^5 +...
A(x)^2 = 1 + 2*x + 9*x^2 + 68*x^3 + 700*x^4 + 8794*x^5 + 126974*x^6+..
A(x/A(x)^2) = 1 + x + 2*x^2 + 9*x^3 + 68*x^4 + 700*x^5 + 8794*x^6 +...
A(x) = 1 + x*G(x)^4 where G(x) = A(x*G(x)^2):
G(x) = 1 + x + 6*x^2 + 59*x^3 + 742*x^4 + 10877*x^5 + 177612*x^6 +...
G(x)^2 = 1 + 2*x + 13*x^2 + 130*x^3 + 1638*x^4 + 23946*x^5 +...
To illustrate the formula a(n) = [x^(n-1)] 2*A(x)^(2*n+2)/(n+1),
form a table of coefficients in A(x)^(2*n+2) as follows:
A^4: [(1), 4, 22, 172, 1753, 21612, 306348, ...];
A^6: [1, (6), 39, 320, 3267, 39756, 554595, ...];
A^8: [1, 8, (60), 520, 5366, 64816, 892308, ...];
A^10: [1, 10, 85, (780), 8190, 98702, 1344920, ...];
A^12: [1, 12, 114, 1108, (11895), 143676, 1943488, ...];
A^14: [1, 14, 147, 1512, 16653, (202384), 2725541, ...]; ...
in which the main diagonal forms the initial terms of this sequence:
[2/2*(1), 2/3*(6), 2/4*(60), 2/5*(780), 2/6*(11895), 2/7*(202384), ...].
PROG
(PARI) {a(n)=local(F=1+x, G); for(i=0, n, G=serreverse(x/(F+x*O(x^n))^2)/x; F=1+x*G^2); polcoeff(F, n)}
(PARI) /* This sequence is generated when k=2, m=2: A(x/A(x)^k) = 1 + x*A(x)^m */
{a(n, k=2, m=2)=local(A=sum(i=0, n-1, a(i, k, m)*x^i)+x*O(x^n)); if(n==0, 1, polcoeff((m+k)/(m+k*n)*A^(m+k*n), n-1))}
for(n=0, 20, print1(a(n), ", "))
CROSSREFS
Sequence in context: A362700 A088794 A239841 * A052574 A158834 A139086
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Nov 09 2008
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 4 05:33 EST 2023. Contains 367541 sequences. (Running on oeis4.)