login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A145345
G.f. satisfies: A(x/A(x)) = 1 + x*A(x).
4
1, 1, 2, 7, 34, 203, 1398, 10706, 89120, 794347, 7502170, 74511150, 773864654, 8368430208, 93905460014, 1090519614152, 13077315637592, 161643281777801, 2056306418177832, 26887064722265250, 360939404438509866
OFFSET
0,3
COMMENTS
From Paul D. Hanna, Nov 15 2008: (Start)
More generally, if g.f. A(x) satisfies: A(x/A(x)^k) = 1 + x*A(x)^m, then
A(x) = 1 + x*G(x)^(m+k) where G(x) = A(x*G(x)^k) and G(x/A(x)^k) = A(x);
thus a(n) = [x^(n-1)] ((m+k)/(m+k*n))*A(x)^(m+k*n) for n>=1 with a(0)=1. (End)
LINKS
FORMULA
G.f. satisfies: A(x) = 1 + x*G(x)^2 where G(x) = g.f. of A121687.
G.f. satisfies: A(x) = G(x/A(x)) where G(x) = A(x*G(x)) = g.f. of A121687. - Paul D. Hanna, Nov 08 2008
a(n) = [x^(n-1)] (2/(n+1))*A(x)^(n+1) for n>=1 with a(0)=1; i.e., a(n) equals 2/(n+1) times the coefficient of x^(n-1) in A(x)^(n+1) for n>=1. - Paul D. Hanna, Nov 15 2008
EXAMPLE
G.f.: A(x) = 1 + x + 2*x^2 + 7*x^3 + 34*x^4 + 203*x^5 + 1398*x^6 + ...
A(x/A(x)) = 1 + x + x^2 + 2*x^3 + 7*x^4 + 34*x^5 + 203*x^6 + 1398*x^7 + ...
A(x) = 1 + x*G(x)^2 where
G(x) = 1 + x + 3*x^2 + 14*x^3 + 83*x^4 + 574*x^5 + 4432*x^6 + ...
is the g.f. of A121687.
ALTERNATE GENERATING METHOD.
This sequence forms column zero in the following array.
Let A denote this sequence.
Start in row zero with this sequence, A, after prepending an initial '1', then repeat: drop the initial term and perform convolution with A and the remaining terms in a given row to obtain the next row:
[1, 1, 1, 2, 7, 34, 203, 1398, 10706, 89120, 794347, 7502170, ...];
[1, 2, 5, 18, 86, 502, 3387, 25496, 209242, 1843134, 17235671, ...];
[2, 7, 27, 128, 727, 4763, 34912, 280006, 2418537, 22240055, ...];
[7, 34, 169, 958, 6173, 44364, 349152, 2965098, 26864357, ...];
[34, 203, 1195, 7707, 54792, 425216, 3560600, 31842929, ...];
[203, 1398, 9308, 66310, 510689, 4231188, 37425922, ...];
[1398, 10706, 78414, 605401, 4987185, 43742924, 406387957, ...];
[10706, 89120, 705227, 5824356, 50853813, 469182452, ...];
[89120, 794347, 6707823, 58712463, 539651646, 5211277285, ...];
[794347, 7502170, 67008980, 617340184, 5942316416, 59827126712, ...]; ...
PROG
(PARI) {a(n)=local(F=1+x); for(i=0, n, G=serreverse(x/(F+x*O(x^n)))/x; F=1+x*subst(F, x, x*G)^2); polcoeff(F, n)}
(PARI) {a(n)=local(F=1+x); for(i=0, n, G=serreverse(x/(F+x*O(x^n)))/x; F=1+x*G^2); polcoeff(F, n)} \\ Paul D. Hanna, Nov 08 2008
(PARI) /* This sequence is generated when k=1, m=1: A(x/A(x)^k) = 1 + x*A(x)^m */ {a(n, k=1, m=1)=local(A=sum(i=0, n-1, a(i, k, m)*x^i)); if(n==0, 1, polcoeff((m+k)/(m+k*n)*A^(m+k*n), n-1))} \\ Paul D. Hanna, Nov 15 2008
(PARI) /* Prints terms 0..30 */
{A=[1];
for(m=1, 30,
B=A;
for(i=1, m-1, C=Vec(Ser(A)*Ser(B)); B=vector(#C-1, n, C[n+1]) );
A=concat(A, 0); A[#A]=B[1]
);
A} \\ Paul D. Hanna, Jan 10 2016
(PARI) {a(n) = my(A=[1]); for(m=1, n, A=concat(A, 0); A[m+1] = (Vec((1+x*Ser(A)^(m+1)))[m+1] - Vec(Ser(A))[m+1])/(m+1)); A[n+1]}
for(n=0, 30, print1(2^n*a(n), ", ")) \\ Vaclav Kotesovec, Jan 31 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Nov 05 2008
STATUS
approved