login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A145345 G.f. satisfies: A(x/A(x)) = 1 + x*A(x). 4
1, 1, 2, 7, 34, 203, 1398, 10706, 89120, 794347, 7502170, 74511150, 773864654, 8368430208, 93905460014, 1090519614152, 13077315637592, 161643281777801, 2056306418177832, 26887064722265250, 360939404438509866 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
COMMENTS
From Paul D. Hanna, Nov 15 2008: (Start)
More generally, if g.f. A(x) satisfies: A(x/A(x)^k) = 1 + x*A(x)^m, then
A(x) = 1 + x*G(x)^(m+k) where G(x) = A(x*G(x)^k) and G(x/A(x)^k) = A(x);
thus a(n) = [x^(n-1)] ((m+k)/(m+k*n))*A(x)^(m+k*n) for n>=1 with a(0)=1. (End)
LINKS
FORMULA
G.f. satisfies: A(x) = 1 + x*G(x)^2 where G(x) = g.f. of A121687.
G.f. satisfies: A(x) = G(x/A(x)) where G(x) = A(x*G(x)) = g.f. of A121687. - Paul D. Hanna, Nov 08 2008
a(n) = [x^(n-1)] (2/(n+1))*A(x)^(n+1) for n>=1 with a(0)=1; i.e., a(n) equals 2/(n+1) times the coefficient of x^(n-1) in A(x)^(n+1) for n>=1. - Paul D. Hanna, Nov 15 2008
EXAMPLE
G.f.: A(x) = 1 + x + 2*x^2 + 7*x^3 + 34*x^4 + 203*x^5 + 1398*x^6 + ...
A(x/A(x)) = 1 + x + x^2 + 2*x^3 + 7*x^4 + 34*x^5 + 203*x^6 + 1398*x^7 + ...
A(x) = 1 + x*G(x)^2 where
G(x) = 1 + x + 3*x^2 + 14*x^3 + 83*x^4 + 574*x^5 + 4432*x^6 + ...
is the g.f. of A121687.
ALTERNATE GENERATING METHOD.
This sequence forms column zero in the following array.
Let A denote this sequence.
Start in row zero with this sequence, A, after prepending an initial '1', then repeat: drop the initial term and perform convolution with A and the remaining terms in a given row to obtain the next row:
[1, 1, 1, 2, 7, 34, 203, 1398, 10706, 89120, 794347, 7502170, ...];
[1, 2, 5, 18, 86, 502, 3387, 25496, 209242, 1843134, 17235671, ...];
[2, 7, 27, 128, 727, 4763, 34912, 280006, 2418537, 22240055, ...];
[7, 34, 169, 958, 6173, 44364, 349152, 2965098, 26864357, ...];
[34, 203, 1195, 7707, 54792, 425216, 3560600, 31842929, ...];
[203, 1398, 9308, 66310, 510689, 4231188, 37425922, ...];
[1398, 10706, 78414, 605401, 4987185, 43742924, 406387957, ...];
[10706, 89120, 705227, 5824356, 50853813, 469182452, ...];
[89120, 794347, 6707823, 58712463, 539651646, 5211277285, ...];
[794347, 7502170, 67008980, 617340184, 5942316416, 59827126712, ...]; ...
PROG
(PARI) {a(n)=local(F=1+x); for(i=0, n, G=serreverse(x/(F+x*O(x^n)))/x; F=1+x*subst(F, x, x*G)^2); polcoeff(F, n)}
(PARI) {a(n)=local(F=1+x); for(i=0, n, G=serreverse(x/(F+x*O(x^n)))/x; F=1+x*G^2); polcoeff(F, n)} \\ Paul D. Hanna, Nov 08 2008
(PARI) /* This sequence is generated when k=1, m=1: A(x/A(x)^k) = 1 + x*A(x)^m */ {a(n, k=1, m=1)=local(A=sum(i=0, n-1, a(i, k, m)*x^i)); if(n==0, 1, polcoeff((m+k)/(m+k*n)*A^(m+k*n), n-1))} \\ Paul D. Hanna, Nov 15 2008
(PARI) /* Prints terms 0..30 */
{A=[1];
for(m=1, 30,
B=A;
for(i=1, m-1, C=Vec(Ser(A)*Ser(B)); B=vector(#C-1, n, C[n+1]) );
A=concat(A, 0); A[#A]=B[1]
);
A} \\ Paul D. Hanna, Jan 10 2016
(PARI) {a(n) = my(A=[1]); for(m=1, n, A=concat(A, 0); A[m+1] = (Vec((1+x*Ser(A)^(m+1)))[m+1] - Vec(Ser(A))[m+1])/(m+1)); A[n+1]}
for(n=0, 30, print1(2^n*a(n), ", ")) \\ Vaclav Kotesovec, Jan 31 2023
CROSSREFS
Sequence in context: A307696 A237645 A117399 * A212027 A056543 A357829
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Nov 05 2008
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 5 10:56 EST 2023. Contains 367589 sequences. (Running on oeis4.)