login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A237645
G.f. satisfies: A(x) = G(x*A(x)) where G(x) = -1+x + A(x) + 1/A(x).
1
1, 1, 2, 7, 34, 201, 1357, 10109, 81397, 698948, 6341597, 60391832, 600661215, 6215862360, 66726103981, 741259084280, 8504902411004, 100618874020119, 1225724374602147, 15356200178917791, 197646961110310062, 2610956607315266757, 35370366025297098315
OFFSET
0,3
LINKS
FORMULA
G.f. satisfies:
(1) A(x) = -1 + x*A(x) + A(x*A(x)) + 1/A(x*A(x)).
(2) A(x) = (1/x) * Series_Reversion( x / ( -1+x + A(x) + 1/A(x) ) ).
a(n) = [x^n] ( -1+x + A(x) + 1/A(x) )^(n+1) / (n+1).
EXAMPLE
G.f.: A(x) = 1 + x + 2*x^2 + 7*x^3 + 34*x^4 + 201*x^5 + 1357*x^6 +...
Let G(x) = -1+x + A(x) + 1/A(x):
G(x) = 1 + x + x^2 + 3*x^3 + 13*x^4 + 70*x^5 + 436*x^6 + 3024*x^7 + 22828*x^8 + 184795*x^9 + 1587809*x^10 +...
then A(x) = G(x*A(x)) and G(x) = A(x/G(x)).
Related expansions.
A(x*A(x)) = 1 + x + 3*x^2 + 13*x^3 + 72*x^4 + 470*x^5 + 3449*x^6 + 27662*x^7 + 238209*x^8 + 2176591*x^9 + 20928935*x^10 +...
1/A(x*A(x)) = 1 - x - 2*x^2 - 8*x^3 - 45*x^4 - 303*x^5 - 2293*x^6 - 18910*x^7 - 166921*x^8 - 1559040*x^9 - 15286286*x^10 +...
where A(x) = -1 + x*A(x) + A(x*A(x)) + 1/A(x*A(x)).
PROG
(PARI) {a(n)=local(A=[1, 1]); for(m=2, n+1, A[m]=Vec((-1+x+ Ser(A) +1/Ser(A))^m)[m]/m; A=concat(A, 0)); A[n+1]}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
Sequence in context: A241599 A356118 A307696 * A117399 A145345 A212027
KEYWORD
nonn
AUTHOR
Paul D. Hanna, May 02 2014
STATUS
approved