login
A237643
Least positive integer m such that {A000720(k*n): k = 1, ..., m} contains a complete system of residues modulo n, or 0 if such a number m does not exist.
4
1, 2, 3, 8, 8, 12, 13, 14, 27, 25, 32, 25, 16, 23, 94, 41, 46, 67, 38, 60, 77, 55, 84, 46, 88, 79, 85, 113, 82, 155, 114, 141, 178, 132, 124, 176, 155, 96, 135, 176, 146, 148, 126, 125, 183, 191, 185, 194, 166, 261, 378, 230, 278, 203, 199, 161, 293, 286, 175, 274
OFFSET
1,2
COMMENTS
Conjecture: a(n) is always positive. Moreover, a(n) <= 2*prime(n) for all n > 0.
Note that a(15) = 94 = 2*prime(15).
LINKS
Zhi-Wei Sun, On a^n+bn modulo m, preprint, arXiv:1312.1166 [math.NT], 2013-2014.
EXAMPLE
a(4) = 8 since {A000720(4*k): k = 1, ..., 8} = {2, 4, 5, 6, 8, 9, 9, 11} contains a complete system of residues modulo 4, but {pi(4*k): k = 1, ..., 7} contains no integer congruent to 3 modulo 4.
MATHEMATICA
q[m_, n_]:=Length[Union[Table[Mod[PrimePi[k*n], n], {k, 1, m}]]]
Do[Do[If[q[m, n]==n, Print[n, " ", m]; Goto[aa]], {m, n, 2*Prime[n]}];
Print[n, " ", 0]; Label[aa]; Continue, {n, 1, 60}]
KEYWORD
nonn,changed
AUTHOR
Zhi-Wei Sun, Feb 10 2014
STATUS
approved