login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A302703
G.f. A(x) satisfies: [x^n] A(x)^(n+1) = [x^n] (1 + x*A(x)^(n+1))^(n+1) for n>=0.
13
1, 1, 3, 21, 235, 3470, 61933, 1274893, 29423331, 747440115, 20636072811, 613611700946, 19517927805840, 660667692682175, 23699856058131981, 897955765812058192, 35832679277251514074, 1502303284645831488072, 66031982339561373164915, 3036884343153028302140119, 145885192794643951791449387
OFFSET
0,3
LINKS
FORMULA
G.f. A(x) = Sum_{n>=0} a(n)*x^n satisfies:
(1) [x^n] A(x)^(n+1) = [x^n] (1 + x*A(x)^(n+1))^(n+1) for n>=0.
(2) A(x) = Sum_{n>=0} b(n) * x^n/A(x)^n, where b(n) = [x^n] (1 + x*A(x)^(n+1))^(n+1) / (n+1).
a(n) ~ c * d^n * n! * n^alfa, where d = A360279 = 2.1246065836242897918278825..., alfa = 2.2013296851505132606640400434738193121994558898350865326..., c = 0.026186121837027622395555466054900245177877028741031867... - Vaclav Kotesovec, Oct 06 2020, updated Feb 05 2023
EXAMPLE
G.f.: A(x) = 1 + x + 3*x^2 + 21*x^3 + 235*x^4 + 3470*x^5 + 61933*x^6 + 1274893*x^7 + 29423331*x^8 + 747440115*x^9 + 20636072811*x^10 + ...
RELATED SERIES.
G.f. A(x) = B(x/A(x)) where B(x) = B(x*A(x)) begins:
B(x) = 1 + x + 4*x^2 + 31*x^3 + 356*x^4 + 5291*x^5 + 94592*x^6 + 1948763*x^7 + 45025516*x^8 + 1145651239*x^9 + 31696223593*x^10 + ... + b(n)*x^n + ...
such that b(n) = [x^n] (1 + x*A(x)^(n+1))^(n+1) / (n+1),
as well as b(n) = [x^n] A(x)^(n+1) / (n+1),
so that b(n) begin:
[1, 2/2, 12/3, 124/4, 1780/5, 31746/6, 662144/7, 15590104/8, ...]
ILLUSTRATION OF DEFINITION.
The table of coefficients of x^k in A(x)^(n+1) begins:
n=0: [1, 1, 3, 21, 235, 3470, 61933, 1274893, ...];
n=1: [1, 2, 7, 48, 521, 7536, 132657, 2704342, ...];
n=2: [1, 3, 12, 82, 867, 12288, 213282, 4304877, ...];
n=3: [1, 4, 18, 124, 1283, 17828, 305056, 6094832, ...];
n=4: [1, 5, 25, 175, 1780, 24271, 409380, 8094540, ...];
n=5: [1, 6, 33, 236, 2370, 31746, 527824, 10326546, ...];
n=6: [1, 7, 42, 308, 3066, 40397, 662144, 12815839, ...];
n=7: [1, 8, 52, 392, 3882, 50384, 814300, 15590104, ...]; ...
Compare to the table of coefficients in (1 + x*A(x)^(n+1))^(n+1):
n=0: [1, 1, 1, 3, 21, 235, 3470, 61933, ...];
n=1: [1, 2, 5, 18, 114, 1166, 16355, 283142, ...];
n=2: [1, 3, 12, 55, 354, 3372, 44463, 739917, ...];
n=3: [1, 4, 22, 124, 857, 7908, 98244, 1558788, ...];
n=4: [1, 5, 35, 235, 1780, 16501, 195980, 2955095, ...];
n=5: [1, 6, 51, 398, 3321, 31746, 368032, 5294250, ...];
n=6: [1, 7, 70, 623, 5719, 57302, 662144, 9182013, ...];
n=7: [1, 8, 92, 920, 9254, 98088, 1149804, 15590104, ...]; ...
to see that the main diagonals of the tables are the same.
PROG
(PARI) {a(n) = my(A=[1]); for(m=1, n, A=concat(A, 0); A[m+1] = (Vec((1+x*Ser(A)^(m+1))^(m+1))[m+1] - Vec(Ser(A)^(m+1))[m+1])/(m+1) ); A[n+1]}
for(n=0, 30, print1(a(n), ", "))
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Apr 16 2018
STATUS
approved