The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A138903 a(n) = (1/2^n)* Sum_{k=0..n} binomial(n,k)*(n+k)^(n-1). 2
1, 3, 21, 234, 3590, 70254, 1672972, 46955760, 1517994792, 55549351800, 2269918543640, 102452561694864, 5062050729973120, 271751784988056576, 15750949414628405760, 980315266648197537792, 65207656047198387921536 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
LINKS
FORMULA
E.g.f.: A(x) = log(B(x)), where B(x) is e.g.f. of A138860.
E.g.f.: A(x) = Series_Reversion[ 2*x/(exp(x) + exp(2*x)) ].
a(n) ~ n^(n-1)*(1+r)^n*r^n/(sqrt(1+3*r)*(1-r)^(2*n)*exp(n)*2^n), where r = 0.6472709258412625... is the root of the equation (r/(1-r))^(1+r) = e. - Vaclav Kotesovec, Jun 15 2013
MAPLE
A138903 := proc(n) local k ; add(binomial(n, k)*(n+k)^(n-1), k=0..n)/2^n ; end: seq(A138903(n), n=1..20) ; # R. J. Mathar, Apr 12 2008
MATHEMATICA
Table[1/2^n * Sum[Binomial[n, k]*(n+k)^(n-1), {k, 0, n}], {n, 1, 20}] (* Vaclav Kotesovec, Jun 15 2013 *)
PROG
(PARI) {a(n)=local(X=x+x*O(x^n)); n!*polcoeff(serreverse(2*x/(exp(X)+exp(2*X)) ), n)}
CROSSREFS
Sequence in context: A005373 A078586 A179331 * A302703 A334262 A234855
KEYWORD
easy,nonn
AUTHOR
Paul D. Hanna and Vladeta Jovovic, Apr 02 2008, Apr 03 2008
EXTENSIONS
More terms from R. J. Mathar, Apr 12 2008
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 23 22:02 EDT 2024. Contains 372765 sequences. (Running on oeis4.)