The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A138903 a(n) = (1/2^n)* Sum_{k=0..n} binomial(n,k)*(n+k)^(n-1). 2
 1, 3, 21, 234, 3590, 70254, 1672972, 46955760, 1517994792, 55549351800, 2269918543640, 102452561694864, 5062050729973120, 271751784988056576, 15750949414628405760, 980315266648197537792, 65207656047198387921536 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 LINKS Table of n, a(n) for n=1..17. FORMULA E.g.f.: A(x) = log(B(x)), where B(x) is e.g.f. of A138860. E.g.f.: A(x) = Series_Reversion[ 2*x/(exp(x) + exp(2*x)) ]. a(n) ~ n^(n-1)*(1+r)^n*r^n/(sqrt(1+3*r)*(1-r)^(2*n)*exp(n)*2^n), where r = 0.6472709258412625... is the root of the equation (r/(1-r))^(1+r) = e. - Vaclav Kotesovec, Jun 15 2013 MAPLE A138903 := proc(n) local k ; add(binomial(n, k)*(n+k)^(n-1), k=0..n)/2^n ; end: seq(A138903(n), n=1..20) ; # R. J. Mathar, Apr 12 2008 MATHEMATICA Table[1/2^n * Sum[Binomial[n, k]*(n+k)^(n-1), {k, 0, n}], {n, 1, 20}] (* Vaclav Kotesovec, Jun 15 2013 *) PROG (PARI) {a(n)=local(X=x+x*O(x^n)); n!*polcoeff(serreverse(2*x/(exp(X)+exp(2*X)) ), n)} CROSSREFS Sequence in context: A005373 A078586 A179331 * A302703 A334262 A234855 Adjacent sequences: A138900 A138901 A138902 * A138904 A138905 A138906 KEYWORD easy,nonn AUTHOR Paul D. Hanna and Vladeta Jovovic, Apr 02 2008, Apr 03 2008 EXTENSIONS More terms from R. J. Mathar, Apr 12 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 23 22:02 EDT 2024. Contains 372765 sequences. (Running on oeis4.)