login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = (1/2^n)* Sum_{k=0..n} binomial(n,k)*(n+k)^(n-1).
2

%I #16 Feb 10 2024 04:44:52

%S 1,3,21,234,3590,70254,1672972,46955760,1517994792,55549351800,

%T 2269918543640,102452561694864,5062050729973120,271751784988056576,

%U 15750949414628405760,980315266648197537792,65207656047198387921536

%N a(n) = (1/2^n)* Sum_{k=0..n} binomial(n,k)*(n+k)^(n-1).

%F E.g.f.: A(x) = log(B(x)), where B(x) is e.g.f. of A138860.

%F E.g.f.: A(x) = Series_Reversion[ 2*x/(exp(x) + exp(2*x)) ].

%F a(n) ~ n^(n-1)*(1+r)^n*r^n/(sqrt(1+3*r)*(1-r)^(2*n)*exp(n)*2^n), where r = 0.6472709258412625... is the root of the equation (r/(1-r))^(1+r) = e. - _Vaclav Kotesovec_, Jun 15 2013

%p A138903 := proc(n) local k ; add(binomial(n,k)*(n+k)^(n-1),k=0..n)/2^n ; end: seq(A138903(n),n=1..20) ; # _R. J. Mathar_, Apr 12 2008

%t Table[1/2^n * Sum[Binomial[n,k]*(n+k)^(n-1),{k,0,n}],{n,1,20}] (* _Vaclav Kotesovec_, Jun 15 2013 *)

%o (PARI) {a(n)=local(X=x+x*O(x^n)); n!*polcoeff(serreverse(2*x/(exp(X)+exp(2*X)) ), n)}

%K easy,nonn

%O 1,2

%A _Paul D. Hanna_ and _Vladeta Jovovic_, Apr 02 2008, Apr 03 2008

%E More terms from _R. J. Mathar_, Apr 12 2008