login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A302701
O.g.f. A(x) satisfies: A(x) = 1 + Integral (x/A(x))' / (x/A(x)^4)' dx.
9
1, 1, 3, 16, 118, 1050, 10509, 113892, 1307043, 15661024, 194075098, 2470848492, 32161635070, 426440290744, 5743575712131, 78405535427220, 1082876597440146, 15109514661352482, 212736976140479073, 3019422091269739704, 43164665664066028062, 621078277521084894978, 8989001884449529431990, 130795752983608734209604, 1912460927749734257739153, 28088780052768915388505436, 414247711043291214286003410
OFFSET
0,3
LINKS
FORMULA
O.g.f. A(x) satisfies:
(1) A(x) = 1 + Integral (x/A(x))' / (x/A(x)^4)' dx.
(2) A(x) = 1 + Integral A(x)^3 * (A(x) - x*A'(x)) / (A(x) - 4*x*A'(x)) dx.
(3) A(x) = 1 + Integral A(x) * (1 + x*A(x)^2 - sqrt(1 - 14*x*A(x)^2 + x^2*A(x)^4) )/(8*x) dx.
(4) 0 = A(x)^4 - A(x)*(1 + x*A(x)^2)*A'(x) + 4*x*A'(x)^2.
a(n) ~ 3^(2/3) * (1240209 - 716035*sqrt(3))^(1/6) * 2^((4*n - 5)/3) * (3 + 2*sqrt(3))^n / (sqrt(Pi) * n^(5/2)). - Vaclav Kotesovec, Oct 14 2020
EXAMPLE
G.f.: A(x) = 1 + x + 3*x^2 + 16*x^3 + 118*x^4 + 1050*x^5 + 10509*x^6 + 113892*x^7 + 1307043*x^8 + 15661024*x^9 + 194075098*x^10 + ...
RELATED SERIES.
(x/A(x))' / (x/A(x)^4)' = 1 + 6*x + 48*x^2 + 472*x^3 + 5250*x^4 + 63054*x^5 + 797244*x^6 + 10456344*x^7 + 140949216*x^8 + 1940750980*x^9 + ...
which equals A'(x).
The logarithmic derivative of the g.f. begins:
A'(x)/A(x) = 1 + 5*x + 40*x^2 + 401*x^3 + 4531*x^4 + 55040*x^5 + 701716*x^6 + 9261257*x^7 + 125449600*x^8 + 1734071855*x^9 + 24362189248*x^10 + ...
which equals (1 + x*A(x)^2 - sqrt(1 - 14*x*A(x)^2 + x^2*A(x)^4))/(8*x).
MATHEMATICA
nmax = 30; A = 1; Do[A = 1 + Integrate[D[x/A, x]/D[x/A^4, x], x] + O[x]^nmax, nmax]; CoefficientList[A, x] (* Vaclav Kotesovec, Oct 15 2020 *)
PROG
(PARI) {a(n) = my(A=1); for(i=1, n, A = 1 + intformal( (x/A)'/(x/A^4 +x*O(x^n))' ); ); polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
KEYWORD
nonn,nice
AUTHOR
Paul D. Hanna, Apr 19 2018
STATUS
approved